IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i2p218-219.html
   My bibliography  Save this article

Introduction to the In Focus on simulation of geologic carbon sequestration with the TOUGH codes

Author

Listed:
  • Christine Doughty

Abstract

No abstract is available for this item.

Suggested Citation

  • Christine Doughty, 2017. "Introduction to the In Focus on simulation of geologic carbon sequestration with the TOUGH codes," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 218-219, April.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:2:p:218-219
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1675
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lehua Pan & Nicolas Spycher & Christine Doughty & Karsten Pruess, 2017. "ECO2N V2.0: A TOUGH2 fluid property module for modeling CO 2 ‐H 2 O‐NACL systems to elevated temperatures of up to 300°C," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 313-327, April.
    2. Alfredo Battistelli & Paolo Berry & Stefano Bonduà & Villiam Bortolotti & Alberto Consonni & Carlo Cormio & Claudio Geloni & Ester M. Vasini, 2017. "Thermodynamics‐related processes during the migration of acid gases and methane in deep sedimentary formations," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 295-312, April.
    3. Nathan Moodie & Feng Pan & Wei Jia & Brian McPherson, 2017. "Impacts of relative permeability formulation on forecasts of CO 2 phase behavior, phase distribution, and trapping mechanisms in a geologic carbon storage reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 241-258, April.
    4. Nathan Moodie & Feng Pan & Wei Jia & Brian McPherson, 2017. "Impacts of relative permeability formulation on forecasts of CO 2 phase behavior, phase distribution, and trapping mechanisms in a geologic carbon storage reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(5), pages 958-962, October.
    5. Cai Li & Keni Zhang & Chaobin Guo & Jian Xie & Jing Zhao & Xia Li & Federico Maggi, 2017. "Impacts of relative permeability hysteresis on the reservoir performance in CO 2 storage in the Ordos Basin," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 259-272, April.
    6. Chi‐Wen Yu & Shih‐Chang Lei & Chung‐Hui Chiao & Lian‐Tong Hwang & Wan‐Huei Yang & Ming‐Wei Yang, 2017. "Injection risk assessment for intra‐formational seal geological model in a carbon sequestration application in Taiwan," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(2), pages 225-240, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanpeng Zheng & Qingsong Ma & Pei Hu & Yongchen Song & Dayong Wang, 2020. "Uncertainty and sensitivity analysis of relative permeability curves for the numerical simulation of CO2 core flooding," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 519-530, June.
    2. Xiao, Ting & Chen, Ting & Ma, Zhiwei & Tian, Hailong & Meguerdijian, Saro & Chen, Bailian & Pawar, Rajesh & Huang, Lianjie & Xu, Tianfu & Cather, Martha & McPherson, Brian, 2024. "A review of risk and uncertainty assessment for geologic carbon storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Jing, Jing & Yang, Yanlin & Cheng, Jianmei & Ding, Zhaojing & Wang, Dandan & Jing, Xianwen, 2023. "Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage," Energy, Elsevier, vol. 280(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:2:p:218-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.