IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v7y2017i1p202-214.html
   My bibliography  Save this article

Equilibrium solubility measurement and Kent‐Eisenberg modeling of CO 2 absorption in aqueous mixture of N‐methyldiethanolamine and hexamethylenediamine

Author

Listed:
  • Bikash K. Mondal
  • Syamalendu S. Bandyopadhyay
  • Amar N. Samanta

Abstract

Vapor‐liquid equilibrium of CO 2 in aqueous mixture of hexamethylenediamine (HMDA) and N‐methyldiethanolamine (MDEA) has been investigated using a stirred equilibrium cell set‐up in the temperature and pressure range of 303–333K and 1–100kPa, respectively. Composition of the mixed amine solvents used are (5mass% HMDA+25mass% MDEA), (10 mass% HMDA+20 mass% MDEA), (15mass% HMDA+15mass% MDEA), and (20 mass% HMDA+10 mass% MDEA). Equilibrium solubility data is fitted using the Kent‐Eisenberg thermodynamic model. To fit experimental solubility data with model predicted data, bicarbamate formation and zwitterion deprotonation reaction equilibrium constants of HMDA are regressed as a function of CO 2 loading and temperature. Average absolute deviation between experimental and model predicted data is found to be 7.16%. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Bikash K. Mondal & Syamalendu S. Bandyopadhyay & Amar N. Samanta, 2017. "Equilibrium solubility measurement and Kent‐Eisenberg modeling of CO 2 absorption in aqueous mixture of N‐methyldiethanolamine and hexamethylenediamine," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 202-214, February.
  • Handle: RePEc:wly:greenh:v:7:y:2017:i:1:p:202-214
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/ghg.1653
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fu, Dong & Zhang, Pan, 2015. "Investigation of the absorption performance and viscosity for CO2 capture process using [Bmim][Gly] promoted MDEA (N-methyldiethanolamine) aqueous solution," Energy, Elsevier, vol. 87(C), pages 165-172.
    2. Fu, Dong & Zhang, Pan & Wang, LeMeng, 2016. "Absorption performance of CO2 in high concentrated [Bmim][Lys]-MDEA aqueous solution," Energy, Elsevier, vol. 113(C), pages 1-8.
    3. Fu, Dong & Zhang, Pan & Mi, ChenLu, 2016. "Effects of concentration and viscosity on the absorption of CO2 in [N1111][Gly] promoted MDEA (methyldiethanolamine) aqueous solution," Energy, Elsevier, vol. 101(C), pages 288-295.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pan & Tian, XiangFeng & Fu, Dong, 2018. "CO2 removal in tray tower by using AAILs activated MDEA aqueous solution," Energy, Elsevier, vol. 161(C), pages 1122-1132.
    2. Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
    3. Fu, Dong & Zhang, Pan & Wang, LeMeng, 2016. "Absorption performance of CO2 in high concentrated [Bmim][Lys]-MDEA aqueous solution," Energy, Elsevier, vol. 113(C), pages 1-8.
    4. Zhang, Lu & Li, Yuan & Zhou, Hongcang, 2018. "Preparation and characterization of DBU-loaded MCM-41 for adsorption of CO2," Energy, Elsevier, vol. 149(C), pages 414-423.
    5. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    6. Zhou, Xiaobin & Jing, Guohua & Lv, Bihong & Liu, Fan & Zhou, Zuoming, 2019. "Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol," Applied Energy, Elsevier, vol. 235(C), pages 379-390.
    7. Chen, Yifeng & Sun, Yunhao & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent," Applied Energy, Elsevier, vol. 257(C).
    8. Meng, Fanli & Fu, Kun & Wang, Xueli & Wang, Yixiao & Wang, Lemeng & Fu, Dong, 2024. "Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas," Energy, Elsevier, vol. 286(C).
    9. Fu, Dong & Zhang, Pan & Mi, ChenLu, 2016. "Effects of concentration and viscosity on the absorption of CO2 in [N1111][Gly] promoted MDEA (methyldiethanolamine) aqueous solution," Energy, Elsevier, vol. 101(C), pages 288-295.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:7:y:2017:i:1:p:202-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.