IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i5p925-937.html
   My bibliography  Save this article

The enhanced enzymatic performance of carbonic anhydrase on the reaction rate between CO2 and aqueous solutions of sterically hindered amines

Author

Listed:
  • Neslisah Cihan
  • Ozge Yuksel Orhan

Abstract

The kinetics of the reactions of carbon dioxide (CO2) with aqueous solutions of two different sterically hindered amines (SHAs), 2‐amino‐2‐ethyl‐1,3‐propanediol (AEPD) and 2‐amino‐2‐methyl‐1,3‐propanediol (AMPD), in the presence and absence of carbonic anhydrase (CA) was investigated experimentally using stopped‐flow conductimetry. The amine concentration, CA concentration, and temperature were varied within the ranges of 0.1–0.5 kmol·m–3, 0–125 g·m–3, and 298–353 K, respectively. Based on pseudo first‐order reaction conditions, the intrinsic reaction rate (ko) was obtained according to a modified termolecular reaction mechanism. The obtained results showed that the reaction rate between the SHA solutions (either aqueous AEPD or aqueous AMPD) and CO2 was enhanced significantly upon adding small amounts of CA as a promoter. Such a result supports the use of the aforementioned solvent system as a candidate for CO2 capture. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Neslisah Cihan & Ozge Yuksel Orhan, 2020. "The enhanced enzymatic performance of carbonic anhydrase on the reaction rate between CO2 and aqueous solutions of sterically hindered amines," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 925-937, October.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:925-937
    DOI: 10.1002/ghg.2012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2012
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    2. Pal, Animesh & Uddin, Kutub & Saha, Bidyut Baran & Thu, Kyaw & Kil, Hyun-Sig & Yoon, Seong-Ho & Miyawaki, Jin, 2020. "A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons," Applied Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Heping & Liao, Hailong & Zhai, Shuo & Liu, Tao & Wu, Yifan & Wang, Fuhuan & Li, Junbiao & Zhang, Yuan & Chen, Bin, 2023. "Enhancing Zn–CO2 battery with a facile Pd doped perovskite cathode for efficient CO2 to CO conversion," Energy, Elsevier, vol. 263(PB).
    2. Bharath, G. & Karthikeyan, G. & Kumar, Anuj & Prakash, J. & Venkatasubbu, Devanand & Kumar Nadda, Ashok & Kumar Gupta, Vijai & Abu Haija, Mohammad & Banat, Fawzi, 2022. "Surface engineering of Au nanostructures for plasmon-enhanced electrochemical reduction of N2 and CO2 into urea in the visible-NIR region," Applied Energy, Elsevier, vol. 318(C).
    3. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    5. Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).
    6. Vahid Barahimi & Monica Ho & Eric Croiset, 2023. "From Lab to Fab: Development and Deployment of Direct Air Capture of CO 2," Energies, MDPI, vol. 16(17), pages 1-33, September.
    7. Wei, Guoqiang & Zhou, Huan & Huang, Zhen & Zheng, Anqing & Zhao, Kun & Lin, Yan & Chang, Guozhang & Zhao, Zengli & Li, Haibin & Fang, Yitian, 2021. "Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting," Energy, Elsevier, vol. 215(PB).
    8. Ryu, Kyung Hwan & Kim, Boeun & Heo, Seongmin, 2022. "Sustainability analysis framework based on global market dynamics: A carbon capture and utilization industry case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Fares Almomani & Amera Abdelbar & Sophia Ghanimeh, 2023. "A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    10. Brough, Daniel & Mezquita, Ana & Ferrer, Salvador & Segarra, Carmen & Chauhan, Amisha & Almahmoud, Sulaiman & Khordehgah, Navid & Ahmad, Lujean & Middleton, David & Sewell, H. Isaac & Jouhara, Hussam, 2020. "An experimental study and computational validation of waste heat recovery from a lab scale ceramic kiln using a vertical multi-pass heat pipe heat exchanger," Energy, Elsevier, vol. 208(C).
    11. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    12. Alirza Orujov & Kipp Coddington & Saman A. Aryana, 2023. "A Review of CCUS in the Context of Foams, Regulatory Frameworks and Monitoring," Energies, MDPI, vol. 16(7), pages 1-41, April.
    13. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Bahaa, Ahmed & Eisa, Tasnim & Alawadhi, Hussain & Al-Asheh, Sameer & Chae, Kyu-Jung & Olabi, A.G., 2021. "Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    15. Yue, Tian & Shen, Boxiong & Gao, Pei, 2022. "Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Zdeb, Janusz & Howaniec, Natalia & Smoliński, Adam, 2023. "Experimental study on combined valorization of bituminous coal derived fluidized bed fly ash and carbon dioxide from energy sector," Energy, Elsevier, vol. 265(C).
    17. Liang Liu & Lianshui Li, 2021. "The effect of directed technical change on carbon dioxide emissions: evidence from China’s industrial sector at the provincial level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2463-2486, July.
    18. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    19. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    20. Liang Xu & Qi Li & Matthew Myers & Yongsheng Tan & Miao He & Happiness Ijeoma Umeobi & Xiaochun Li, 2021. "The effects of porosity and permeability changes on simulated supercritical CO2 migration front in tight glutenite under different effective confining pressures from 1.5 MPa to 21.5 MPa," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 19-36, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:5:p:925-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.