IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v10y2020i4p829-839.html
   My bibliography  Save this article

Mitigation of NOx emission by monophenolic antioxidants blended in POME biodiesel blends

Author

Listed:
  • Mohd Hafiz Ali
  • Abdullah Adam
  • Mohd Hafizil Mat Yasin
  • Mohd Kamal Kamarulzaman
  • Mohd Fahmi Othman

Abstract

Biodiesel is among the solutions to substitute petroleum‐based fuel. However, the autoxidation ability of biodiesel, which results in degradation of the existing oxygen, has delayed its use on a global level. A potential solution to this problem is the addition of antioxidant additives. Palm oil methyl ester (POME) is the most popular biodiesel in Malaysia. Diesel 80% + POME 20% (B20) was added with two types of monophenolic antioxidant additives, which were butylated hydroxytoluene and butylated hydroxyanisole, at 1000 ppm and 1500 ppm concentrations, respectively, to examine their effects on combustion characteristics, engine performances and exhaust emissions. Hielscher UP400S ultrasonic emulsifier was used to prepare the fuel blends at 20% of the maximum stirring speed. Yanmar TF120M single‐cylinder diesel engine was employed at a constant speed of 1800 rpm with various engine loads. The results showed that B20 and antioxidant‐treated B20 produced a mean increase in brake specific fuel consumption of 8.33%–23.27% and reduced brake thermal efficiency by a mean that was 8.40%–24.95% greater than that of diesel fuel. Both antioxidants reduced nitrogen oxide emission by a mean of 12.92%–30.54%, compared to B20. © 2019 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Mohd Hafiz Ali & Abdullah Adam & Mohd Hafizil Mat Yasin & Mohd Kamal Kamarulzaman & Mohd Fahmi Othman, 2020. "Mitigation of NOx emission by monophenolic antioxidants blended in POME biodiesel blends," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 829-839, August.
  • Handle: RePEc:wly:greenh:v:10:y:2020:i:4:p:829-839
    DOI: 10.1002/ghg.1931
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.1931
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.1931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ndayishimiye, Pascal & Tazerout, Mohand, 2011. "Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics," Energy, Elsevier, vol. 36(3), pages 1790-1796.
    2. Ying Liu & Haiying Tang & Aamer Muhammad & Guoqin Huang, 2019. "Emission mechanism and reduction countermeasures of agricultural greenhouse gases – a review," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(2), pages 160-174, April.
    3. Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
    4. Marina A. Mihajlović & Radmilo V. Pešić & Mića B. Jovanović, 2019. "Framework of new landfill GHG policy in developing countries: Case study of Serbia," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(2), pages 152-159, April.
    5. Zifei Liu & Yang Liu, 2018. "Mitigation of greenhouse gas emissions from animal production," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 627-638, August.
    6. Senthur Prabu, S. & Asokan, M.A. & Roy, Rahul & Francis, Steff & Sreelekh, M.K., 2017. "Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives," Energy, Elsevier, vol. 122(C), pages 638-648.
    7. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    8. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    9. Hirkude, Jagannath Balasaheb & Padalkar, Atul S., 2012. "Performance and emission analysis of a compression ignition," Applied Energy, Elsevier, vol. 90(1), pages 68-72.
    10. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    11. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    2. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    3. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. Kumar, Vijay & Choudhary, Akhilesh Kumar, 2024. "Prediction of the Performance and emission characteristics of diesel engine using diphenylamine Antioxidant and ceria nanoparticle additives with biodiesel based on machine learning," Energy, Elsevier, vol. 301(C).
    6. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    7. Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Fazal, M.A. & Khan, Abdul Faheem & Fayaz, H. & Varman, M., 2013. "Impact of palm biodiesel blend on injector deposit formation," Applied Energy, Elsevier, vol. 111(C), pages 882-893.
    8. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    9. Rashed, M.M. & Masjuki, H.H. & Kalam, M.A. & Alabdulkarem, Abdullah & Rahman, M.M. & Imdadul, H.K. & Rashedul, H.K., 2016. "Study of the oxidation stability and exhaust emission analysis of Moringa olifera biodiesel in a multi-cylinder diesel engine with aromatic amine antioxidants," Renewable Energy, Elsevier, vol. 94(C), pages 294-303.
    10. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    11. Sundus, F. & Fazal, M.A. & Masjuki, H.H., 2017. "Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 399-412.
    12. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    13. Wei, Lijiang & Cheng, Rupeng & Mao, Hongjun & Geng, Peng & Zhang, Yanjie & You, Kun, 2018. "Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends," Energy, Elsevier, vol. 144(C), pages 73-80.
    14. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Kamil Duda & Maciej Mikulski, 2021. "Research of Parameters of a Compression Ignition Engine Using Various Fuel Mixtures of Hydrotreated Vegetable Oil (HVO) and Fatty Acid Esters (FAE)," Energies, MDPI, vol. 14(11), pages 1-18, May.
    15. Senthur Prabu, S. & Asokan, M.A. & Prathiba, S. & Ahmed, Shakkeel & Puthean, George, 2018. "Effect of additives on performance, combustion and emission behavior of preheated palm oil/diesel blends in DI diesel engine," Renewable Energy, Elsevier, vol. 122(C), pages 196-205.
    16. Leevijit, Theerayut & Prateepchaikul, Gumpon & Maliwan, Kittinan & Mompiboon, Parinya & Eiadtrong, Suppakit, 2017. "Comparative properties and utilization of un-preheated degummed/esterified mixed crude palm oil-diesel blends in an agricultural engine," Renewable Energy, Elsevier, vol. 101(C), pages 82-89.
    17. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    18. Tan, Pi-qiang & Ruan, Shuai-shuai & Hu, Zhi-yuan & Lou, Di-ming & Li, Hu, 2014. "Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions," Applied Energy, Elsevier, vol. 113(C), pages 22-31.
    19. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    20. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:10:y:2020:i:4:p:829-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.