IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v35y2024i4ne2840.html
   My bibliography  Save this article

Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy data: A Bayesian model approach

Author

Listed:
  • Elliot S. Shannon
  • Andrew O. Finley
  • Daniel J. Hayes
  • Sylvia N. Noralez
  • Aaron R. Weiskittel
  • Bruce D. Cook
  • Chad Babcock

Abstract

Geolocation error in spaceborne sampling light detection and ranging (LiDAR) measurements of forest structure can compromise forest attribute estimates and degrade integration with georeferenced field measurements or other remotely sensed data. Data integration is especially problematic when geolocation error is not well quantified. We propose a general model that uses airborne laser scanning data to quantify and correct geolocation error in spaceborne sampling LiDAR. To illustrate the model, LiDAR data from NASA Goddard's LiDAR Hyperspectral and Thermal Imager (G‐LiHT) was used with a subset of LiDAR data from NASA's Global Ecosystem Dynamics Investigation (GEDI). The model accommodates multiple canopy height metrics derived from a simulated GEDI footprint kernel using spatially coincident G‐LiHT, and incorporates both additive and multiplicative mapping between the canopy height metrics generated from both datasets. A Bayesian implementation provides probabilistic uncertainty quantification in both parameter and geolocation error estimates. Results show a systematic geolocation error of 9.62 m in the southwest direction. In addition, estimated geolocation errors within GEDI footprints were highly variable, with results showing a ∼$$ \sim $$0.45 probability the true footprint center is within 20 m. Estimating and correcting geolocation error via the model outlined here can help inform subsequent efforts to integrate spaceborne LiDAR data, like GEDI, with other georeferenced data.

Suggested Citation

  • Elliot S. Shannon & Andrew O. Finley & Daniel J. Hayes & Sylvia N. Noralez & Aaron R. Weiskittel & Bruce D. Cook & Chad Babcock, 2024. "Quantifying and correcting geolocation error in spaceborne LiDAR forest canopy observations using high spatial accuracy data: A Bayesian model approach," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
  • Handle: RePEc:wly:envmet:v:35:y:2024:i:4:n:e2840
    DOI: 10.1002/env.2840
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2840
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shinichiro Shirota & Andrew O. Finley & Bruce D. Cook & Sudipto Banerjee, 2023. "Conjugate sparse plus low rank models for efficient Bayesian interpolation of large spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Zammit‐Mangion & Nathaniel K. Newlands & Wesley S. Burr, 2023. "Environmental data science: Part 1," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    2. Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:35:y:2024:i:4:n:e2840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.