Discussion on A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources
Author
Abstract
Suggested Citation
DOI: 10.1002/env.2650
Download full text from publisher
References listed on IDEAS
- Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
- Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 211-235, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
- Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
- Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020.
"Prediction regions for interval‐valued time series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
- Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2018. "Prediction Regions for Interval-valued Time Series," Working Papers 201817, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2019. "Prediction Regions for Interval-valued Time Series," Working Papers 201921, University of California at Riverside, Department of Economics.
- González-Rivera, Gloria & Luo, Yun, 2019. "Prediction regions for interval-valued time series," DES - Working Papers. Statistics and Econometrics. WS 29054, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
- Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
- Marcin Jurek & Matthias Katzfuss, 2023. "Scalable spatio‐temporal smoothing via hierarchical sparse Cholesky decomposition," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
- Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022.
"Score-based calibration testing for multivariate forecast distributions,"
Papers
2211.16362, arXiv.org, revised Dec 2023.
- Knüppel, Malte & Krüger, Fabian & Pohle, Marc-Oliver, 2022. "Score-based calibration testing for multivariate forecast distributions," Discussion Papers 50/2022, Deutsche Bundesbank.
- Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
- Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
- Wei, Wei & Balabdaoui, Fadoua & Held, Leonhard, 2017. "Calibration tests for multivariate Gaussian forecasts," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 216-233.
- Wei Wei & Leonhard Held, 2014. "Calibration tests for count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 787-805, December.
- Li, Yanting & Peng, Xinghao & Zhang, Yu, 2022. "Forecasting methods for wind power scenarios of multiple wind farms based on spatio-temporal dependency structure," Renewable Energy, Elsevier, vol. 201(P1), pages 950-960.
- Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
- Peter McAdam & Anders Warne, 2024.
"Density forecast combinations: The real‐time dimension,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1153-1172, August.
- McAdam, Peter & Warne, Anders, 2020. "Density forecast combinations: the real-time dimension," Working Paper Series 2378, European Central Bank.
- Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Stover, Oliver & Nath, Paromita & Karve, Pranav & Mahadevan, Sankaran & Baroud, Hiba, 2024. "Dependence structure learning and joint probabilistic forecasting of stochastic power grid variables," Applied Energy, Elsevier, vol. 357(C).
- Allen, Sam & Koh, Jonathan & Segers, Johan & Ziegel, Johanna, 2024. "Tail calibration of probabilistic forecasts," LIDAM Discussion Papers ISBA 2024018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- van der Meer, Dennis & Wang, Guang Chao & Munkhammar, Joakim, 2021. "An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic," Applied Energy, Elsevier, vol. 283(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:7:n:e2650. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.