IDEAS home Printed from https://ideas.repec.org/a/wly/coacre/v6y1989i1p196-215.html
   My bibliography  Save this article

An empirical study of regression analysis as an analytical procedure

Author

Listed:
  • ARLETTE C. WILSON
  • DENNIS HUDSON

Abstract

. A newly issued AICPA auditing standard focuses attention on analytical procedures. Regression analysis has been shown to be a useful audit tool and is used to a limited extent in practice. This study compares a univariate regression†based decision rule with that of exponential smoothing. The effect on the regression†based decision method when additional input information is included to develop a multivariate model is also evaluated. Comparisons are accomplished by seeding various error patterns into the audit period data and evaluating the results of the various models. The results indicate that the regression†based decision model was at least as efficient and effective as the exponential smoothing†based model. Additional input information into the univariate regression model to develop a multivariate model did improve auditor decisions for some types of accounts but did not significantly affect the number of incorrect rejections and/or acceptances for other types. The multivariate model did improve the achieved precision of the univariate model but still did not reach desired levels. Résumé. Dans un Auditing Standards Procedures qu'il publiait récemment, l'AICPA se penche sur les procédés analytiques. L'analyse de régression s'est révélée un instrument de vérification utile et son emploi dans la pratique est modéré, Les auteurs comparent une règle de décision fondée sur une régression comportant une seule variable aléatoire avec celle du lissage exponentiel. L'incidence d'un supplément d'information à l'entrée sur la méthode de décision fondée sur la régression permet de mettre au point un modèle à plusieurs variables aléatoires, que les auteurs évaluent également. Les comparaisons sont réalisées en introduisant divers scénarios d'erreur dans les données de la période soumise à la vérification. Les résultats de l'étude indiquent que le modèle de décision fondé sur la régression est au moins aussi efficient et efficace que le modèle fondé sur le lissage exponentiel. L'introduction d'un supplément d'information dans le modèle de régression à une seule variable aléatoire de manière à créer un modèle à plusieurs variables aléatoires a de fait amélioré les décisions du vérificateur pour certains types de comptes, mais n'a pas eu d'incidence significative sur le nombre d'erreurs de première et de seconde espèces pour d'autres types de comptes. La performance du modèle à plusieurs variables aléatoires est de fait supérieure à celle du modèle à une seule variable aléatoire, sans toutefois permettre d'obtenir les niveaux de précision souhaités.

Suggested Citation

  • Arlette C. Wilson & Dennis Hudson, 1989. "An empirical study of regression analysis as an analytical procedure," Contemporary Accounting Research, John Wiley & Sons, vol. 6(1), pages 196-215, September.
  • Handle: RePEc:wly:coacre:v:6:y:1989:i:1:p:196-215
    DOI: 10.1111/j.1911-3846.1989.tb00753.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1911-3846.1989.tb00753.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1911-3846.1989.tb00753.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Teitlebaum, Ad & Robinson, Cf, 1975. "Real Risks In Audit Sampling," Journal of Accounting Research, Wiley Blackwell, vol. 13, pages 70-91.
    2. Kinney, Wr & Salamon, Gl, 1982. "Regression-Analysis In Auditing - A Comparison Of Alternative Investigation Rules," Journal of Accounting Research, Wiley Blackwell, vol. 20(2), pages 350-366.
    3. Stringer, Kw, 1975. "Statistical Technique For Analytical Review," Journal of Accounting Research, Wiley Blackwell, vol. 13, pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James R. Coakley & Carol E. Brown, 1993. "Artificial Neural Networks Applied to Ratio Analysis in the Analytical Review Process," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 2(1), pages 19-39, January.
    2. Daniel E. O'Leary, 2024. "Toward an extended framework of exhaust data for predictive analytics: An empirical approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    3. David R. Finley, 1994. "Game Theoretic Analysis of Discovery Sampling for Internal Fraud Control Auditing," Contemporary Accounting Research, John Wiley & Sons, vol. 11(1), pages 91-114, June.
    4. David R. Finley, 1989. "Decision theory analysis of audit discovery sampling," Contemporary Accounting Research, John Wiley & Sons, vol. 5(2), pages 692-719, March.
    5. D. Eric Hirst & Lisa Koonce, 1996. "Audit Analytical Procedures: A Field Investigation," Contemporary Accounting Research, John Wiley & Sons, vol. 13(2), pages 457-486, September.
    6. Wally Smieliauskas, 1986. "Control of sampling risks in auditing," Contemporary Accounting Research, John Wiley & Sons, vol. 3(1), pages 102-124, September.
    7. J. Christopher Westland, 2017. "An empirical investigation of analytical procedures using mixture distributions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(4), pages 111-124, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:coacre:v:6:y:1989:i:1:p:196-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1911-3846 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.