IDEAS home Printed from https://ideas.repec.org/a/wly/canjec/v35y2002i4p843-853.html
   My bibliography  Save this article

How long to eat a cake of unknown size? Optimal time horizon under uncertainty

Author

Listed:
  • Ramesh C. Kumar

Abstract

This paper is concerned with the determination of the optimal time horizon for the cake–eating problem under uncertainty. It is shown that if the uncertain exhaustible resource stock is a discrete random variable admitting at most a finite number of values, the optimal planning horizon is infinite (finite) according as the marginal utility of extraction–cum–consumption is infinite (a finite positive value) as the latter approaches zero, thereby extending the scope of the similar result under perfect certainty. Other results show that uncertainty will generally lengthen the planning horizon, implying a more conservative extraction policy under uncertainty, and that the extraction policy aimed at extracting an amount equal to the expected value of the uncertain resource stock takes longer than the expected value of the optimal planning horizon. JEL Classification: D81 and Q31 Combien de temps pour manger un gâteau de taille inconnue? L’horizon temporel optimal en régime d’incertitude. Ce mémoire s’attaque à la détermination de l’horizon temporel optimal dans le cas du problème du gâteau–à–manger en régime d’incertitude. On montre que si le stock incertain de la ressource épuisable est une variable aléatoire discontinue qui ne peut prendre qu’un nombre fini de valeurs, l’horizon temporel est infini (fini) selon que l’utilité marginale de l’extraction–cum–consommation est infinie (prend une value finie positive) quand celle–ci approche zéro, et ce faisant élargit la portée d’un résultat similaire obtenu en régime de certitude parfaite. D’autres résultats montrent que l’incertitude accroît généralement l’horizon temporel, ce qui suggère qu’une politique d’extraction plus conservatrice va prévaloir en régime d’incertitude, et que la politique d’extraction visant à extraire une quantitéégale à la valeur anticipée d’un stock de ressource incertain prend plus de temps que la valeur anticipée de l’horizon temporel optimal.

Suggested Citation

  • Ramesh C. Kumar, 2002. "How long to eat a cake of unknown size? Optimal time horizon under uncertainty," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 35(4), pages 843-853, November.
  • Handle: RePEc:wly:canjec:v:35:y:2002:i:4:p:843-853
    DOI: 10.1111/0008-4085.00156
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/0008-4085.00156
    Download Restriction: no

    File URL: https://libkey.io/10.1111/0008-4085.00156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Ramesh C., 2005. "How to eat a cake of unknown size: A reconsideration," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 408-421, September.
    2. Yang, Shubo & Jahanger, Atif & Balsalobre-Lorente, Daniel, 2024. "Sustainable resource management in China's energy mining sector: A synthesis of development and conservation in the FinTech era," Resources Policy, Elsevier, vol. 89(C).
    3. Murray C. Kemp & Ngo Van Long, 2007. "Extracting Several Resource Deposits of Unknown Size: Optimal Order," CIRANO Working Papers 2007s-10, CIRANO.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:canjec:v:35:y:2002:i:4:p:843-853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1540-5982 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.