IDEAS home Printed from https://ideas.repec.org/a/wly/apsmda/v4y1988i3p185-204.html
   My bibliography  Save this article

A new stochastic ultrametric tree unfolding methodology for assessing competitive market structure and deriving market segments

Author

Listed:
  • W. S. Desarbo
  • G. de Soete
  • J. D. Carroll
  • V. Ramaswamy

Abstract

We present a new methodology for simultaneously assessing competitive market structure and deriving market segments. A hierarchical or ultrametric tree representation is estimated in a maximum likelihood framework from collected paired‐comparison choice data. The derived tree portrays both brands and consumers/households/segments as terminal nodes, where the ‘closer’ a brand is to a particular consumer/household/segment in the tree, the higher the predicted probability of that consumer/household/segment choosing that particular brand. This paper initially presents an introduction to the problem of market structure assessment. We review the extensive marketing literature on market structure and survey several competing methodologies. The proposed stochastic ultrametric tree unfolding methodology is technically described and several program options are indicated. An illustration of the proposed methodology is presented with respect to paired comparison choice data collected from a convenience sample involving the over‐the‐counter analgesics market. Finally, several areas for future research are identified.

Suggested Citation

  • W. S. Desarbo & G. de Soete & J. D. Carroll & V. Ramaswamy, 1988. "A new stochastic ultrametric tree unfolding methodology for assessing competitive market structure and deriving market segments," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 4(3), pages 185-204, September.
  • Handle: RePEc:wly:apsmda:v:4:y:1988:i:3:p:185-204
    DOI: 10.1002/asm.3150040306
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asm.3150040306
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asm.3150040306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junghyun Park & Minki Kim & Pradeep K Chintagunta, 2022. "Mapping Consumers’ Context-Dependent Consumption Preferences: A Multidimensional Unfolding Approach [An Empirical Comparison of Logit Choice Models with Discrete versus Continuous Representations o," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 49(2), pages 202-228.
    2. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    3. Wayne DeSarbo & Kamel Jedidi & Joel Steckel, 1991. "A stochastic multidimensional scaling procedure for the empirical determination of convex indifference curves for preference/choice analysis," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 279-307, June.
    4. Martin Young & Wayne DeSarbo, 1995. "A parametric procedure for ultrametric tree estimation from conditional rank order proximity data," Psychometrika, Springer;The Psychometric Society, vol. 60(1), pages 47-75, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmda:v:4:y:1988:i:3:p:185-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-0747 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.