IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v36y2020i3p307-334.html
   My bibliography  Save this article

Filter‐based portfolio strategies in an HMM setting with varying correlation parametrizations

Author

Listed:
  • Christina Erlwein‐Sayer
  • Stefanie Grimm
  • Peter Ruckdeschel
  • Jörn Sass
  • Tilman Sayer

Abstract

We consider portfolio optimization in a regime‐switching market. The assets of the portfolio are modeled through a hidden Markov model (HMM) in discrete time, where drift and volatility of the single assets are allowed to switch between different states. We consider different parametrizations of the involved asset covariances: statewise uncorrelated assets (though linked through the common Markov chain), assets correlated in a state‐independent way, and assets where the correlation varies from state to state. As a benchmark, we also consider a model without regime switches. We utilize a filter‐based expectation‐maximization (EM) algorithm to obtain optimal parameter estimates within this multivariate HMM and present parameter estimators in all three HMM settings. We discuss the impact of these different models on the performance of several portfolio strategies. Our findings show that for simulated returns, our strategies in many settings outperform naïve investment strategies, like the equal weights strategy. Information criteria can be used to detect the best model for estimation as well as for portfolio optimization. A second study using real data confirms these findings.

Suggested Citation

  • Christina Erlwein‐Sayer & Stefanie Grimm & Peter Ruckdeschel & Jörn Sass & Tilman Sayer, 2020. "Filter‐based portfolio strategies in an HMM setting with varying correlation parametrizations," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 307-334, May.
  • Handle: RePEc:wly:apsmbi:v:36:y:2020:i:3:p:307-334
    DOI: 10.1002/asmb.2491
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2491
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Bulla, Jan & Mergner, Sascha & Bulla, Ingo & Sesboüé, André & Chesneau, Christophe, 2010. "Markov-switching Asset Allocation: Do Profitable Strategies Exist?," MPRA Paper 21154, University Library of Munich, Germany.
    3. Jörn Sass & Ulrich Haussmann, 2004. "Optimizing the terminal wealth under partial information: The drift process as a continuous time Markov chain," Finance and Stochastics, Springer, vol. 8(4), pages 553-577, November.
    4. Robert J. Elliott & John van der Hoek, 1997. "An application of hidden Markov models to asset allocation problems (*)," Finance and Stochastics, Springer, vol. 1(3), pages 229-238.
    5. Jörn Sass & Manfred Schäl, 2014. "Numeraire portfolios and utility-based price systems under proportional transaction costs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 195-234, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kexin Chen & Hoi Ying Wong, 2022. "Duality in optimal consumption--investment problems with alternative data," Papers 2210.08422, arXiv.org, revised Jul 2023.
    2. Kexin Chen & Hoi Ying Wong, 2024. "Duality in optimal consumption–investment problems with alternative data," Finance and Stochastics, Springer, vol. 28(3), pages 709-758, July.
    3. Elliott, Robert J. & Siu, Tak Kuen & Badescu, Alex, 2010. "On mean-variance portfolio selection under a hidden Markovian regime-switching model," Economic Modelling, Elsevier, vol. 27(3), pages 678-686, May.
    4. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    5. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    6. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    7. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    8. Dindo, Pietro & Massari, Filippo, 2020. "The wisdom of the crowd in dynamic economies," Theoretical Economics, Econometric Society, vol. 15(4), November.
    9. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    10. Liusha Yang & Romain Couillet & Matthew R. McKay, 2015. "A Robust Statistics Approach to Minimum Variance Portfolio Optimization," Papers 1503.08013, arXiv.org.
    11. Benjamin Hippert & André Uhde & Sascha Tobias Wengerek, 2019. "Portfolio benefits of adding corporate credit default swap indices: evidence from North America and Europe," Review of Derivatives Research, Springer, vol. 22(2), pages 203-259, July.
    12. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    13. Rui Pedro Brito & Hélder Sebastião & Pedro Godinho, 2016. "Efficient skewness/semivariance portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 17(5), pages 331-346, September.
    14. Hunt, Julien & Devolder, Pierre, 2011. "Semi Markov regime switching interest rate models and minimal entropy measure," LIDAM Discussion Papers ISBA 2011010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Białkowski, Jędrzej, 2020. "Cryptocurrencies in institutional investors’ portfolios: Evidence from industry stop-loss rules," Economics Letters, Elsevier, vol. 191(C).
    16. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    17. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    18. Andrew Papanicolaou, 2018. "Backward SDEs for Control with Partial Information," Papers 1807.08222, arXiv.org.
    19. David E. Allen & Michael McAleer & Abhay K. Singh, 2016. "A Multi-Criteria Portfolio Analysis of Hedge Fund Strategies," Documentos de Trabajo del ICAE 2017-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    20. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:36:y:2020:i:3:p:307-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.