IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v21y2005i3p251-263.html
   My bibliography  Save this article

Analysis of call centre arrival data using singular value decomposition

Author

Listed:
  • Haipeng Shen
  • Jianhua Z. Huang

Abstract

We consider the general problem of analysing and modelling call centre arrival data. A method is described for analysing such data using singular value decomposition (SVD). We illustrate that the outcome from the SVD can be used for data visualization, detection of anomalies (outliers), and extraction of significant features from noisy data. The SVD can also be employed as a data reduction tool. Its application usually results in a parsimonious representation of the original data without losing much information. We describe how one can use the reduced data for some further, more formal statistical analysis. For example, a short‐term forecasting model for call volumes is developed, which is multiplicative with a time series component that depends on day of the week. We report empirical results from applying the proposed method to some real data collected at a call centre of a large‐scale U.S. financial organization. Some issues about forecasting call volumes are also discussed. Copyright © 2005 John Wiley & Sons, Ltd.

Suggested Citation

  • Haipeng Shen & Jianhua Z. Huang, 2005. "Analysis of call centre arrival data using singular value decomposition," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 21(3), pages 251-263, May.
  • Handle: RePEc:wly:apsmbi:v:21:y:2005:i:3:p:251-263
    DOI: 10.1002/asmb.598
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.598
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    2. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    5. Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
    6. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    7. Zhang, Lingsong & Lu, Shu & Marron, J.S., 2015. "Nested nonnegative cone analysis," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 100-110.
    8. D. Wooff & S. Stirling, 2015. "Practical statistical methods for call centres with a case study addressing urgent medical care delivery," Annals of Operations Research, Springer, vol. 233(1), pages 501-515, October.
    9. Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
    10. Haipeng Shen & Jianhua Z. Huang, 2008. "Interday Forecasting and Intraday Updating of Call Center Arrivals," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 391-410, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:21:y:2005:i:3:p:251-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.