IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v37y2021i2p367-394n8.html
   My bibliography  Save this article

A Diagnostic for Seasonality Based Upon Polynomial Roots of ARMA Models

Author

Listed:
  • McElroy Tucker

    (Research and Methodology Directorate, U.S. Census Bureau, 4600 Silver Hill Road, Washington, D.C. 20233-9100, U.S.A.)

Abstract

Methodology for seasonality diagnostics is extremely important for statistical agencies, because such tools are necessary for making decisions whether to seasonally adjust a given series, and whether such an adjustment is adequate. This methodology must be statistical, in order to furnish quantification of Type I and II errors, and also to provide understanding about the requisite assumptions. We connect the concept of seasonality to a mathematical definition regarding the oscillatory character of the moving average (MA) representation coefficients, and define a new seasonality diagnostic based on autoregressive (AR) roots. The diagnostic is able to assess different forms of seasonality: dynamic versus stable, of arbitrary seasonal periods, for both raw data and seasonally adjusted data. An extension of the AR diagnostic to an MA diagnostic allows for the detection of over-adjustment. Joint asymptotic results are provided for the diagnostics as they are applied to multiple seasonal frequencies, allowing for a global test of seasonality. We illustrate the method through simulation studies and several empirical examples.

Suggested Citation

  • McElroy Tucker, 2021. "A Diagnostic for Seasonality Based Upon Polynomial Roots of ARMA Models," Journal of Official Statistics, Sciendo, vol. 37(2), pages 367-394, June.
  • Handle: RePEc:vrs:offsta:v:37:y:2021:i:2:p:367-394:n:8
    DOI: 10.2478/jos-2021-0016
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2021-0016
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2021-0016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hylleberg, Svend, 1986. "Seasonality in Regression," Elsevier Monographs, Elsevier, edition 1, number 9780123634559 edited by Shell, Karl.
    2. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Time Series: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 343-349, October.
    3. Busetti, Fabio & Harvey, Andrew, 2003. "Seasonality Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 420-436, July.
    4. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    5. Franses, Philip Hans, 1994. "A multivariate approach to modeling univariate seasonal time series," Journal of Econometrics, Elsevier, vol. 63(1), pages 133-151, July.
    6. Keith R. Phillips & Jack Wang, 2016. "Residual seasonality in U.S. GDP data," Working Papers 1608, Federal Reserve Bank of Dallas.
    7. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    8. Ansley, Craig F & Wecker, William E, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series: Comment: On Dips in the Spectrum of a Seasonally Adjusted Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 323-324, October.
    9. Kurt Graden Lunsford, 2017. "Lingering Residual Seasonality in GDP Growth," Economic Commentary, Federal Reserve Bank of Cleveland, issue March.
    10. Tucker McElroy & Anindya Roy, 2018. "The Inverse Kullback–Leibler Method for Fitting Vector Moving Averages," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(2), pages 172-191, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McElroy, Tucker S. & Jach, Agnieszka, 2023. "Identification of the differencing operator of a non-stationary time series via testing for zeroes in the spectral density," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    2. Tucker McElroy & Anindya Roy, 2022. "A Review of Seasonal Adjustment Diagnostics," International Statistical Review, International Statistical Institute, vol. 90(2), pages 259-284, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tucker McElroy & Anindya Roy, 2022. "A Review of Seasonal Adjustment Diagnostics," International Statistical Review, International Statistical Institute, vol. 90(2), pages 259-284, August.
    2. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    3. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Barend Abeln & Jan P. A. M. Jacobs, 2023. "CAMPLET: Seasonal Adjustment Without Revisions," SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 7-29, Springer.
    5. Ghysels, E., 1993. "A Time Series Model with Periodic Stochastic Regime Switching," Cahiers de recherche 9314, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    7. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    8. Barend Abeln & Jan P.A.M. Jacobs, 2015. "Seasonal adjustment with and without revisions: A comparison of X-13ARIMA-SEATS and CAMPLET," CIRANO Working Papers 2015s-35, CIRANO.
    9. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    10. Ghysels, Eric, 1994. "On the Periodic Structure of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 289-298, July.
    11. Bhattacharya, Rudrani & Pandey, Radhika & Patnaik, Ila & Shah, Ajay, 2016. "Seasonal adjustment of Indian macroeconomic time-series," Working Papers 16/160, National Institute of Public Finance and Policy.
    12. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
    13. Martelotte Marcela Cohen & Souza Reinaldo Castro & Silva Eduardo Antônio Barros da, 2017. "Design of Seasonal Adjustment Filter Robust to Variations in the Seasonal Behaviour of Time Series," Journal of Official Statistics, Sciendo, vol. 33(1), pages 155-186, March.
    14. Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
    15. Webel, Karsten, 2016. "A data-driven selection of an appropriate seasonal adjustment approach," Discussion Papers 07/2016, Deutsche Bundesbank.
    16. Buono, Dario & Alpay, Kocak, 2010. "Backward recalculation of seasonal series affected by economic crisis: a Model-Based-Link method for the case of Turkish GDP," MPRA Paper 40092, University Library of Munich, Germany.
    17. Barnett, William A. & de Peretti, Philippe, 2009. "Admissible Clustering Of Aggregator Components: A Necessary And Sufficient Stochastic Seminonparametric Test For Weak Separability," Macroeconomic Dynamics, Cambridge University Press, vol. 13(S2), pages 317-334, September.
    18. Wildi, Marc & McElroy, Tucker S., 2019. "The trilemma between accuracy, timeliness and smoothness in real-time signal extraction," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1072-1084.
    19. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    20. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:37:y:2021:i:2:p:367-394:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.