IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v31y2015i3p431-451n6.html
   My bibliography  Save this article

Models for Combining Aggregate-Level Administrative Data in the Absence of a Traditional Census

Author

Listed:
  • Yildiz Dilek

    (University of Southampton, Social Statistics and Demography, Social Sciences, Southampton, SO17 1BJ, UK.)

  • Smith Peter W.F.

    (University of Southampton, Social Statistics and Demography, Social Sciences, Southampton, SO17 1BJ, UK.)

Abstract

Administrative data sources are an important component of population data collection and they have been used in census data production in the Nordic countries since the 1960s. A large amount of information about the population is already collected in administrative data sources by governments. However, there are some challenges to using administrative data sources to estimate population counts by age, sex, and geographical area as well as population characteristics. The main limitation with the administrative data sources is that they only collect information from a subset of the population about specific events, and this may result in either undercoverage or overcoverage of the population. Another issue with the administrative data sources is that the information may not have the same quality for all population groups. This research aims to correct an inaccurate administrative data source by combining aggregate-level administrative data with more accurate marginal distributions or two-way marginal information from an auxiliary data source and produce accurate population estimates in the absence of a traditional census. The methodology developed is applied to estimate population counts by age, sex, and local authority area in England and Wales. The administrative data source used is the Patient Register which suffers from overcoverage, particularly for people between the ages of 20 and 50.

Suggested Citation

  • Yildiz Dilek & Smith Peter W.F., 2015. "Models for Combining Aggregate-Level Administrative Data in the Absence of a Traditional Census," Journal of Official Statistics, Sciendo, vol. 31(3), pages 431-451, September.
  • Handle: RePEc:vrs:offsta:v:31:y:2015:i:3:p:431-451:n:6
    DOI: 10.1515/jos-2015-0026
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jos-2015-0026
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jos-2015-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter W. F. Smith & James Raymer & Corrado Giulietti, 2010. "Combining available migration data in England to study economic activity flows over time," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(4), pages 733-753, October.
    2. Frans Willekens, 1999. "Modeling approaches to the indirect estimation of migration flows: From entropy to EM," Mathematical Population Studies, Taylor & Francis Journals, vol. 7(3), pages 239-278.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilek Yildiz & Jo Munson & Agnese Vitali & Ramine Tinati & Jennifer A. Holland, 2017. "Using Twitter data for demographic research," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(46), pages 1477-1514.
    2. Willekens Frans, 2019. "Evidence-Based Monitoring of International Migration Flows in Europe," Journal of Official Statistics, Sciendo, vol. 35(1), pages 231-277, March.
    3. Ilya Kashnitsky & Nikita Mkrtchyan & Oleg Leshukov, 2016. "Interregional Migration of Youths in Russia: A Comprehensive Analysis of Demographic Statistics," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 3, pages 169-203.
    4. Michel Guillot & Yan Yu, 2009. "Estimating health expectancies from two cross-sectional surveys," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 21(17), pages 503-534.
    5. Guy Abel, 2013. "Estimating global migration flow tables using place of birth data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(18), pages 505-546.
    6. Katherine Curtis & Elizabeth Fussell & Jack DeWaard, 2015. "Recovery Migration After Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System," Demography, Springer;Population Association of America (PAA), vol. 52(4), pages 1269-1293, August.
    7. Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
    8. James Raymer, 2007. "The Estimation of International Migration Flows: A General Technique Focused on the Origin-Destination Association Structure," Environment and Planning A, , vol. 39(4), pages 985-995, April.
    9. James Raymer & Joop Beer & Rob Erf, 2011. "Putting the Pieces of the Puzzle Together: Age and Sex-Specific Estimates of Migration amongst Countries in the EU/EFTA, 2002–2007," European Journal of Population, Springer;European Association for Population Studies, vol. 27(2), pages 185-215, May.
    10. Stefan Jestl & Mathias Moser & Anna Katharina Raggl, 2021. "Cannot keep up with the Joneses: how relative deprivation pushes internal migration in Austria," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 49(2), pages 210-231, November.
    11. Peter W. F. Smith & James Raymer & Corrado Giulietti, 2010. "Combining available migration data in England to study economic activity flows over time," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(4), pages 733-753, October.
    12. Joop Beer & James Raymer & Rob Erf & Leo Wissen, 2010. "Overcoming the Problems of Inconsistent International Migration data: A New Method Applied to Flows in Europe [Surmonter les problèmes d’incohérences des données sur les migrations internationales:," European Journal of Population, Springer;European Association for Population Studies, vol. 26(4), pages 459-481, November.
    13. James Raymer & Xujing Bai & Nan Liu, 2020. "The dynamic complexity of Australia’s immigration and emigration flows from 1981 to 2016," Journal of Population Research, Springer, vol. 37(3), pages 213-242, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:31:y:2015:i:3:p:431-451:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.