IDEAS home Printed from https://ideas.repec.org/a/vrs/mgrsod/v20y2016i4p5-10n2.html
   My bibliography  Save this article

Does Zipf’s law hold for Polish cities?

Author

Listed:
  • Cieślik Andrzej

    (Department of Macroeconomics and International Trade Theory, Faculty of Economic Sciences, University of Warsaw)

  • Teresiński Jan

    (European University Institute of Florence)

Abstract

In this paper we study Zipf’s law, which postulates that the product of a city’s population and its rank (the number of cities with a larger or equal population) is constant for every city in a given region. We show that the empirical literature indicates that the law may not always hold, although its general form, the rank-size rule, could be a good first approximation of city size distribution. We perform our own empirical analysis of the distribution of the population of Polish cities on the largest possible sample to find that Zipf’s law is rejected for Poland as the city sizes are less evenly distributed than it predicts.

Suggested Citation

  • Cieślik Andrzej & Teresiński Jan, 2016. "Does Zipf’s law hold for Polish cities?," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 20(4), pages 5-10, December.
  • Handle: RePEc:vrs:mgrsod:v:20:y:2016:i:4:p:5-10:n:2
    DOI: 10.1515/mgrsd-2016-0020
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mgrsd-2016-0020
    Download Restriction: no

    File URL: https://libkey.io/10.1515/mgrsd-2016-0020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Eeckhout, 2004. "Gibrat's Law for (All) Cities," American Economic Review, American Economic Association, vol. 94(5), pages 1429-1451, December.
    2. Bosker, Maarten & Brakman, Steven & Garretsen, Harry & Schramm, Marc, 2008. "A century of shocks: The evolution of the German city size distribution 1925-1999," Regional Science and Urban Economics, Elsevier, vol. 38(4), pages 330-347, July.
    3. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    4. Ioannides, Yannis & Skouras, Spyros, 2013. "US city size distribution: Robustly Pareto, but only in the tail," Journal of Urban Economics, Elsevier, vol. 73(1), pages 18-29.
    5. Rosen, Kenneth T. & Resnick, Mitchel, 1980. "The size distribution of cities: An examination of the Pareto law and primacy," Journal of Urban Economics, Elsevier, vol. 8(2), pages 165-186, September.
    6. Giesen, Kristian & Zimmermann, Arndt & Suedekum, Jens, 2010. "The size distribution across all cities - Double Pareto lognormal strikes," Journal of Urban Economics, Elsevier, vol. 68(2), pages 129-137, September.
    7. Marco Modica, 2014. "Does the EU have homogeneous urban structure area? The role of agglomeration and the impact of shocks on urban structure," ERSA conference papers ersa14p229, European Regional Science Association.
    8. Brakman,Steven & Garretsen,Harry & van Marrewijk,Charles, 2009. "The New Introduction to Geographical Economics," Cambridge Books, Cambridge University Press, number 9780521698030, December.
    9. Rafael González-Val & Arturo Ramos & Fernando Sanz-Gracia & María Vera-Cabello, 2015. "Size distributions for all cities: Which one is best?," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 177-196, March.
    10. Giorgio Fazio & Marco Modica, 2015. "Pareto Or Log-Normal? Best Fit And Truncation In The Distribution Of All Cities," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 736-756, November.
    11. Cameron, Trudy Ann, 1990. "One-stage structural models to explain city size," Journal of Urban Economics, Elsevier, vol. 27(3), pages 294-307, May.
    12. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2013. "The size distribution of US cities: Not Pareto, even in the tail," Economics Letters, Elsevier, vol. 120(2), pages 232-237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad, Sidra & Hu, Shougeng & Ashraf, Badar Nadeem, 2019. "Zipf’s law, the coherence of the urban system and city size distribution: Evidence from Pakistan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 87-103.
    2. Rafael González‐Val, 2019. "Historical urban growth in Europe (1300–1800)," Papers in Regional Science, Wiley Blackwell, vol. 98(2), pages 1115-1136, April.
    3. Josic Hrvoje & Bašić Maja, 2018. "Reconsidering Zipf’s law for regional development: The case of settlements and cities in Croatia," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 22(1), pages 22-30, March.
    4. Rafael González-Val, 2019. "US city-size distribution and space," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(3), pages 283-300, July.
    5. Rafael González-Val & Arturo Ramos & Fernando Sanz-Gracia & María Vera-Cabello, 2015. "Size distributions for all cities: Which one is best?," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 177-196, March.
    6. Hasan Engin Duran & Andrzej Cieślik, 2021. "The distribution of city sizes in Turkey: A failure of Zipf’s law due to concavity," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(5), pages 1702-1719, October.
    7. Christian Düben & Melanie Krause, 2021. "Population, light, and the size distribution of cities," Journal of Regional Science, Wiley Blackwell, vol. 61(1), pages 189-211, January.
    8. Ramos, Arturo & Sanz-Gracia, Fernando & González-Val, Rafael, 2013. "A new framework for the US city size distribution: Empirical evidence and theory," MPRA Paper 52190, University Library of Munich, Germany.
    9. Giorgio Fazio & Marco Modica, 2015. "Pareto Or Log-Normal? Best Fit And Truncation In The Distribution Of All Cities," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 736-756, November.
    10. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    11. Asif, Muhammad & Hussain, Zawar & Asghar, Zahid & Hussain, Muhammad Irfan & Raftab, Mariya & Shah, Said Farooq & Khan, Akbar Ali, 2021. "A statistical evidence of power law distribution in the upper tail of world billionaires’ data 2010–20," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Rafael González-Val, 2021. "The Spanish spatial city size distribution," Environment and Planning B, , vol. 48(6), pages 1609-1631, July.
    13. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    14. Clémentine Cottineau, 2022. "What do analyses of city size distributions have in common?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1439-1463, March.
    15. Marco Bee, 2020. "On discriminating between lognormal and Pareto tail: A mixture-based approach," DEM Working Papers 2020/9, Department of Economics and Management.
    16. Miguel Puente-Ajovín & Arturo Ramos, 2015. "On the parametric description of the French, German, Italian and Spanish city size distributions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 489-509, March.
    17. Valente J. Matlaba & Mark J. Holmes & Philip McCann & Jacques Poot, 2013. "A Century Of The Evolution Of The Urban System In Brazil," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 25(3), pages 129-151, November.
    18. Marco Bee, 2024. "On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 251-269, June.
    19. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    20. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:mgrsod:v:20:y:2016:i:4:p:5-10:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.