IDEAS home Printed from https://ideas.repec.org/a/vrs/mgrsod/v20y2016i4p29-37n4.html
   My bibliography  Save this article

The seasonal variability of the amount of global solar radiation reaching the ground in urban and rural areas on the example of Warsaw and Belsk

Author

Listed:
  • Nelken Kinga

    (Department of Climatology, Faculty of Geography and Regional Studies, University of Warsaw)

  • Leziak Kamil

    (Department of Climatology, Faculty of Geography and Regional Studies, University of Warsaw)

Abstract

The aim of this paper is to determine the contemporary differences in the inflow of global solar radiation in Warsaw (urban station) and Belsk (rural station). The meteorological data used comprised daily sums of global solar radiation (in MJ•m−2) and the duration of sunshine (in hours) for the period 2008 2014. On clear days in spring and summer, the rural area receives more solar radiation in comparison to the urban area, whereas in autumn a reverse relationship occurs. On cloudy days in all seasons, the rural area receives more solar radiation than the urban area, and the relationship is the strongest in winter. Differences between urban and rural areas on cloudy days are smaller than those observed on clear days.

Suggested Citation

  • Nelken Kinga & Leziak Kamil, 2016. "The seasonal variability of the amount of global solar radiation reaching the ground in urban and rural areas on the example of Warsaw and Belsk," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 20(4), pages 29-37, December.
  • Handle: RePEc:vrs:mgrsod:v:20:y:2016:i:4:p:29-37:n:4
    DOI: 10.1515/mgrsd-2016-0022
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mgrsd-2016-0022
    Download Restriction: no

    File URL: https://libkey.io/10.1515/mgrsd-2016-0022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Danny H.W & Lam, Joseph C, 2002. "A study of atmospheric turbidity for Hong Kong," Renewable Energy, Elsevier, vol. 25(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eltbaakh, Yousef A. & Ruslan, M.H. & Alghoul, M.A. & Othman, M.Y. & Sopian, K. & Razykov, T.M., 2012. "Solar attenuation by aerosols: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4264-4276.
    2. Lin, Aiwen & Zou, Ling & Wang, Lunche & Gong, Wei & Zhu, Hongji & Salazar, Germán Ariel, 2016. "Estimation of atmospheric turbidity coefficient β over Zhengzhou, China during 1961–2013 using an improved hybrid model," Renewable Energy, Elsevier, vol. 86(C), pages 1134-1144.
    3. Garniwa, Pranda M.P. & Lee, Hyunjin, 2023. "Intercomparison of the parameterized Linke turbidity factor in deriving global horizontal irradiance," Renewable Energy, Elsevier, vol. 212(C), pages 285-298.
    4. Khalil, Samy A. & Shaffie, A.M., 2016. "Attenuation of the solar energy by aerosol particles: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 363-375.
    5. Koussa, Mustapha & Saheb-Koussa, Djohra & Hadji, Seddik, 2017. "Experimental investigation of simple solar radiation spectral model performances under a Mediterranean Algerian's climate," Energy, Elsevier, vol. 120(C), pages 751-773.
    6. Janjai, S. & Kumharn, W. & Laksanaboonsong, J., 2003. "Determination of Angstrom’s turbidity coefficient over Thailand," Renewable Energy, Elsevier, vol. 28(11), pages 1685-1700.
    7. Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:mgrsod:v:20:y:2016:i:4:p:29-37:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.