IDEAS home Printed from https://ideas.repec.org/a/vrs/logitl/v12y2021i1p171-181n7.html
   My bibliography  Save this article

Supply Chain Management and Logistics Big Data Challenges in Bulgaria

Author

Listed:
  • Dragomirov Nikolay

    (University of National and World Economy, Department of Logistics and Supply Chains, Sofia, Bulgaria)

  • Boyanov Luben

    (University of National and World Economy, Department of Information Technologies and Communications, Sofia, Bulgaria)

Abstract

The article focuses on the challenges of applying big data approaches to logistics and supply chain management in Bulgaria, while also presenting the challenges, opportunities and problems from a broader perspective. This includes a review of big data in logistics and its subsystems in relation to integration and transformation processes, as well as the role of big data and the relevant technologies in supply chain management. The research framework for the study of Bulgarian companies focuses on their experiences, both positive and negative, with big data. Data was collected using an electronic questionnaire. The respondents were from small, medium-sized and large companies alike. The results demonstrate and explain the companies’ experiences with big data and the level of application thereof. The findings showed that the main areas for the use of big data are order processing, communication processes, reporting systems, inventory management and vehicle database management.

Suggested Citation

  • Dragomirov Nikolay & Boyanov Luben, 2021. "Supply Chain Management and Logistics Big Data Challenges in Bulgaria," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 171-181, January.
  • Handle: RePEc:vrs:logitl:v:12:y:2021:i:1:p:171-181:n:7
    DOI: 10.2478/logi-2021-0016
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/logi-2021-0016
    Download Restriction: no

    File URL: https://libkey.io/10.2478/logi-2021-0016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yaqoob, Ibrar & Hashem, Ibrahim Abaker Targio & Gani, Abdullah & Mokhtar, Salimah & Ahmed, Ejaz & Anuar, Nor Badrul & Vasilakos, Athanasios V., 2016. "Big data: From beginning to future," International Journal of Information Management, Elsevier, vol. 36(6), pages 1231-1247.
    2. Singh, Akshit & Mishra, Nishikant & Ali, Syed Imran & Shukla, Nagesh & Shankar, Ravi, 2015. "Cloud computing technology: Reducing carbon footprint in beef supply chain," International Journal of Production Economics, Elsevier, vol. 164(C), pages 462-471.
    3. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    4. Nishikant Mishra & Akshit Singh, 2018. "Use of twitter data for waste minimisation in beef supply chain," Annals of Operations Research, Springer, vol. 270(1), pages 337-359, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shima Mirzaei & Sajjad Shokouhyar, 2023. "Applying a thematic analysis in identifying the role of circular economy in sustainable supply chain practices," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4691-4722, May.
    2. Trang Thi Pham & Tsai-Chi Kuo & Ming-Lang Tseng & Raymond R. Tan & Kimhua Tan & Denny Satria Ika & Chiuhsiang Joe Lin, 2019. "Industry 4.0 to Accelerate the Circular Economy: A Case Study of Electric Scooter Sharing," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    3. Sina Davoudi & Peter Stasinopoulos & Nirajan Shiwakoti, 2024. "Two Decades of Advancements in Cold Supply Chain Logistics for Reducing Food Waste: A Review with Focus on the Meat Industry," Sustainability, MDPI, vol. 16(16), pages 1-67, August.
    4. Assarzadegan, Parisa & Rasti-Barzoki, Morteza, 2020. "A game theoretic approach for pricing under a return policy and a money back guarantee in a closed loop supply chain," International Journal of Production Economics, Elsevier, vol. 222(C).
    5. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    6. Huihui Liu & Xiaohang Yue & Hui Ding & G. Keong Leong, 2017. "Optimal Remanufacturing Certification Contracts in the Electrical and Electronic Industry," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    7. Yang, Hui & Chen, Jing & Chen, Xu & Chen, Bintong, 2017. "The impact of customer returns in a supply chain with a common retailer," European Journal of Operational Research, Elsevier, vol. 256(1), pages 139-150.
    8. Bo Wang & Ning Wang, 2022. "Decision Models for a Dual-Recycling Channel Reverse Supply Chain with Consumer Strategic Behavior," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    9. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    10. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    11. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.
    13. Ramani, Vinay & De Giovanni, Pietro, 2017. "A two-period model of product cannibalization in an atypical Closed-loop Supply Chain with endogenous returns: The case of DellReconnect," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1009-1027.
    14. Gong, Hailei & Zhang, Zhi-Hai, 2022. "Benders decomposition for the distributionally robust optimization of pricing and reverse logistics network design in remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 297(2), pages 496-510.
    15. Mehmet Talha Dulman & Surendra M. Gupta, 2018. "Evaluation of Maintenance and EOL Operation Performance of Sensor-Embedded Laptops," Logistics, MDPI, vol. 2(1), pages 1-22, January.
    16. Mona Haji & Laoucine Kerbache & Mahaboob Muhammad & Tareq Al-Ansari, 2020. "Roles of Technology in Improving Perishable Food Supply Chains," Logistics, MDPI, vol. 4(4), pages 1-24, December.
    17. Cabrera-Sánchez, Juan-Pedro & Villarejo-Ramos, à ngel F., 2020. "Acceptance and use of big data techniques in services companies," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    18. Cao, Kaiying & Xu, Yuqiu & Hua, Ye & Choi, Tsan-Ming, 2023. "Supplier or co-optor: Optimal channel and logistics selection problems on retail platforms," European Journal of Operational Research, Elsevier, vol. 311(3), pages 971-988.
    19. Khushboo E-Fatima & Rasoul Khandan & Amin Hosseinian-Far & Dilshad Sarwar, 2023. "The Adoption of Robotic Process Automation Considering Financial Aspects in Beef Supply Chains: An Approach towards Sustainability," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    20. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).

    More about this item

    Keywords

    Logistics; SCM; big data;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:logitl:v:12:y:2021:i:1:p:171-181:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.