IDEAS home Printed from https://ideas.repec.org/a/vrs/finsci/v24y2019i3p35-45n4.html
   My bibliography  Save this article

Heteroskedasticity in Excess Bitcoin Return Data: Google Trend vs. Garch Effects

Author

Listed:
  • Senarathne Chamil W.

    (School of Economics, Wuhan University of Technology, Wuhan, China)

  • Šoja Tijana

    (Central Bank of Bosnia and Herzegovina, Sarajevo, Bosnia and Herzegovina)

Abstract

This paper examines the mixture of distribution properties associated with heteroskedastic excess Bitcoin return data, using the volume of Google search queries as a proxy for the information arrival time, from a monthly data sampling period of June 2010 to May 2019. The results show that the volatility coefficients become highly statistically insignificant when the lagged volume of search queries is included in the conditional variance equation of the GJR-GARCH-M model. This clearly suggests that the volume of search queries is shown to provide significant explanatory power regarding the variance of heteroskedastic excess Bitcoin return, which can be traced from the ARCH process defined in the GJR-GARCH-M specification. A significant negative relationship between the conditional volatility and the volume of search queries indicates that Internet (online) information arrival reduces the risk premium in the Bitcoin market, which may improve market stability.

Suggested Citation

  • Senarathne Chamil W. & Šoja Tijana, 2019. "Heteroskedasticity in Excess Bitcoin Return Data: Google Trend vs. Garch Effects," Financial Sciences. Nauki o Finansach, Sciendo, vol. 24(3), pages 35-45, September.
  • Handle: RePEc:vrs:finsci:v:24:y:2019:i:3:p:35-45:n:4
    DOI: 10.15611/fins.2019.3.04
    as

    Download full text from publisher

    File URL: https://doi.org/10.15611/fins.2019.3.04
    Download Restriction: no

    File URL: https://libkey.io/10.15611/fins.2019.3.04?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    2. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    3. Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari & Olaolu Richard Olayeni, 2016. "What drives Bitcoin price?," Economics Bulletin, AccessEcon, vol. 36(2), pages 843-850.
    4. Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
    5. Senarathne, Chamil W & Jayasinghe, Prabhath, 2017. "Information Flow Interpretation of Heteroskedasticity for Capital Asset Pricing: An Expectation-based View of Risk," MPRA Paper 78771, University Library of Munich, Germany, revised 04 Apr 2017.
    6. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    7. Tim Bollerslev & Natalia Sizova & George Tauchen, 2011. "Volatility in Equilibrium: Asymmetries and Dynamic Dependencies," Review of Finance, European Finance Association, vol. 16(1), pages 31-80.
    8. C W Senarathne & P Jayasinghe, 2017. "Information Flow Interpretation of Heteroskedasticity for Capital Asset Pricing: An Expectation-based View of Risk," Economic Issues Journal Articles, Economic Issues, vol. 22(1), pages 1-24, March.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Shen, Dehua & Li, Xiao & Zhang, Wei, 2018. "Baidu news information flow and return volatility: Evidence for the Sequential Information Arrival Hypothesis," Economic Modelling, Elsevier, vol. 69(C), pages 127-133.
    11. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    12. David Garcia & Claudio Tessone & Pavlin Mavrodiev & Nicolas Perony, "undated". "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Working Papers ETH-RC-14-001, ETH Zurich, Chair of Systems Design.
    13. Zhang, Yongjie & Feng, Lina & Jin, Xi & Shen, Dehua & Xiong, Xiong & Zhang, Wei, 2014. "Internet information arrival and volatility of SME PRICE INDEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 70-74.
    14. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    15. Brauneis, Alexander & Mestel, Roland, 2019. "Cryptocurrency-portfolios in a mean-variance framework," Finance Research Letters, Elsevier, vol. 28(C), pages 259-264.
    16. Shen, Dehua & Zhang, Wei & Xiong, Xiong & Li, Xiao & Zhang, Yongjie, 2016. "Trading and non-trading period Internet information flow and intraday return volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 519-524.
    17. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    18. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    19. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    20. Frode Kjærland & Aras Khazal & Erlend A. Krogstad & Frans B. G. Nordstrøm & Are Oust, 2018. "An Analysis of Bitcoin’s Price Dynamics," JRFM, MDPI, vol. 11(4), pages 1-18, October.
    21. Chan, Wing Hong & Le, Minh & Wu, Yan Wendy, 2019. "Holding Bitcoin longer: The dynamic hedging abilities of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 107-113.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    2. Senarathne Chamil W., 2019. "Possible Impact of Facebook’s Libra on Volatility of Bitcoin: Evidence from Initial Coin Offer Funding Data," Management of Organizations: Systematic Research, Sciendo, vol. 81(1), pages 87-100, June.
    3. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    4. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    5. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    6. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    7. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    8. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    9. Senarathne, Chamil W., . "The Information Flow Interpretation of Margin Debt Value Data: Evidence from New York Stock Exchange," Asian Journal of Applied Economics, Kasetsart University, Center for Applied Economics Research, vol. 26(1).
    10. repec:eme:jalpps:jal-02-2023-0023 is not listed on IDEAS
    11. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    12. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    13. Xun Zhang & Fengbin Lu & Rui Tao & Shouyang Wang, 2021. "The time-varying causal relationship between the Bitcoin market and internet attention," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    14. Chamil W SENARATHNE & Wei JIANGUO, 2020. "Testing for Heteroskedastic Mixture of Ordinary Least Squares Errors," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 73-91, July.
    15. SENARATHNE W Chamil & JIANGUO Wei, 2018. "Do Investors Mimic Trading Strategies Of Foreign Investors Or The Market: Implications For Capital Asset Pricing," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 13(3), pages 171-205, December.
    16. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    17. Walid Bakry & Audil Rashid & Somar Al-Mohamad & Nasser El-Kanj, 2021. "Bitcoin and Portfolio Diversification: A Portfolio Optimization Approach," JRFM, MDPI, vol. 14(7), pages 1-24, June.
    18. Bleher, Johannes & Dimpfl, Thomas, 2019. "Today I got a million, tomorrow, I don't know: On the predictability of cryptocurrencies by means of Google search volume," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 147-159.
    19. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    20. Julián A. Parra & Carlos Arango - Joaquín Bernal & José E. Gómez - Javier Gómez & Carlos León - Clara Machado & Daniel Osorio - Daniel Rojas & Nicolás Suárez - Eduardo Yanquen, 2019. "Criptoactivos: análisis y revisión de literatura," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, issue 92, pages 1-37, November.
    21. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "Quantifying the cross-correlations between online searches and Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 657-672.

    More about this item

    Keywords

    Bitcoin; information flow; GARCH-in-Mean; GARCH effects; Google trend;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:finsci:v:24:y:2019:i:3:p:35-45:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.