IDEAS home Printed from https://ideas.repec.org/a/vrs/eaiada/v24y2020i3p1-19n1.html
   My bibliography  Save this article

Finding Opportunity Windows in Time Series Data Using the Sliding Window Technique: the Case of Stock Exchanges

Author

Listed:
  • Gürsakal Necmi

    (Fenerbahçe University, Faculty of Engineering and Architecture, Turkey)

  • Yilmaz Fırat Melih

    (Dokuz Eylül University, Institute of Social Sciences, Turkey)

  • Uğurlu Erginbay

    (Istanbul Aydın University, Department of International Trade, Turkey)

Abstract

Data have shapes, and human intelligence and perception have to classify the forms of data to understand and interpret them. This article uses a sliding window technique and the main aim is to answer two questions. Is there an opportunity window in time series of stock exchange index? The second question is how to find a way to use the opportunity window if there is one. The authors defined the term opportunity window as a window that is generated in the sliding window technique and can be used for forecasting. In analysis, the study determined the different frequencies and explained how to evaluate opportunity windows embedded using time series data for the S&P 500, the DJIA, and the Russell 2000 indices. As a result, for the S&P 500 the last days of the patterns 0111, 1100, 0011; for the DJIA the last days of the patterns 0101, 1001, 0011; and finally for the Russell 2000, the last days of the patterns 0100, 1001, 1100 are opportunity windows for prediction.

Suggested Citation

  • Gürsakal Necmi & Yilmaz Fırat Melih & Uğurlu Erginbay, 2020. "Finding Opportunity Windows in Time Series Data Using the Sliding Window Technique: the Case of Stock Exchanges," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(3), pages 1-19, September.
  • Handle: RePEc:vrs:eaiada:v:24:y:2020:i:3:p:1-19:n:1
    DOI: 10.15611/eada.2020.3.01
    as

    Download full text from publisher

    File URL: https://doi.org/10.15611/eada.2020.3.01
    Download Restriction: no

    File URL: https://libkey.io/10.15611/eada.2020.3.01?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
    2. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    3. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    4. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    5. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    6. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    7. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    8. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Machine Learning Models for Solar Power Generation Forecasting in Microgrid Application Implications for Smart Cities," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    9. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    10. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    11. Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
    12. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    13. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    14. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    15. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Icaro Romolo Sousa Agostino & Wesley Vieira da Silva & Claudimar Pereira da Veiga & Adriano Mendonça Souza, 2020. "Forecasting models in the manufacturing processes and operations management: Systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1043-1056, November.
    17. Meriem Riad & Mohamed Naimi & Chafik Okar, 2024. "Enhancing Supply Chain Resilience Through Artificial Intelligence: Developing a Comprehensive Conceptual Framework for AI Implementation and Supply Chain Optimization," Logistics, MDPI, vol. 8(4), pages 1-26, November.
    18. Faisal Khalil & Gordon Pipa, 2022. "Is Deep-Learning and Natural Language Processing Transcending the Financial Forecasting? Investigation Through Lens of News Analytic Process," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 147-171, June.
    19. Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
    20. Rybinski, Krzysztof, 2021. "Ranking professional forecasters by the predictive power of their narratives," International Journal of Forecasting, Elsevier, vol. 37(1), pages 186-204.

    More about this item

    Keywords

    time series; data science; patterns; sliding window;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:eaiada:v:24:y:2020:i:3:p:1-19:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.