IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v5y2017i1p75-87n5.html
   My bibliography  Save this article

Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas

Author

Listed:
  • Górecki J.

    (Department of Informatics, SBA in Karviná, Silesian University in Opava, Univerzitní námestí 1934/3, 733 40 Karviná, Czech Republic)

  • Hofert M.

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada)

  • Holeňa M.

    (Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou veží 271/2, 182 07 Praha, Czech Republic)

Abstract

Several successful approaches to structure determination of hierarchical Archimedean copulas (HACs) proposed in the literature rely on agglomerative clustering and Kendall’s correlation coefficient. However, there has not been presented any theoretical proof justifying such approaches. This work fills this gap and introduces a theorem showing that, given the matrix of the pairwise Kendall correlation coefficients corresponding to a HAC, its structure can be recovered by an agglomerative clustering technique.

Suggested Citation

  • Górecki J. & Hofert M. & Holeňa M., 2017. "Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 75-87, January.
  • Handle: RePEc:vrs:demode:v:5:y:2017:i:1:p:75-87:n:5
    DOI: 10.1515/demo-2017-0005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2017-0005
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2017-0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    2. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    3. Rezapour, Mohsen, 2015. "On the construction of nested Archimedean copulas for d-monotone generators," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 21-32.
    4. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    5. Uyttendaele, Nathan, 2016. "On the estimation of nested Archimedean copulas: A theoretical and an experimental comparison," LIDAM Discussion Papers ISBA 2016005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    7. Matsypura, Dmytro & Neo, Emily & Prokhorov, Artem, 2016. "Estimation of Hierarchical Archimedean Copulas as a Shortest Path Problem," Economics Letters, Elsevier, vol. 149(C), pages 131-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.
    2. Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Étienne & Mtalai, Itre, 2017. "Hierarchical Archimedean copulas through multivariate compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 1-13.
    3. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    4. Nathan Uyttendaele, 2018. "On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison," Computational Statistics, Springer, vol. 33(2), pages 1047-1070, June.
    5. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    6. Uyttendaele, Nathan, 2016. "On the estimation of nested Archimedean copulas: A theoretical and an experimental comparison," LIDAM Discussion Papers ISBA 2016005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    9. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    10. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    11. Benjamin Poignard & Jean-David Fermanian, 2022. "The finite sample properties of sparse M-estimators with pseudo-observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 1-31, February.
    12. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    13. Penikas, Henry, 2014. "Investment portfolio risk modelling based on hierarchical copulas," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 35(3), pages 18-38.
    14. Matsypura, Dmytro & Neo, Emily & Prokhorov, Artem, 2016. "Estimation of Hierarchical Archimedean Copulas as a Shortest Path Problem," Economics Letters, Elsevier, vol. 149(C), pages 131-134.
    15. Jean-David Fermanian, 2017. "Recent Developments in Copula Models," Econometrics, MDPI, vol. 5(3), pages 1-3, July.
    16. Benjamin Poignard & Jean-David Fermanian, 2019. "The finite sample properties of Sparse M-estimators with Pseudo-Observations," Working Papers 2019-01, Center for Research in Economics and Statistics.
    17. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    19. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    20. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:5:y:2017:i:1:p:75-87:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.