IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v149y2016icp131-134.html
   My bibliography  Save this article

Estimation of Hierarchical Archimedean Copulas as a Shortest Path Problem

Author

Listed:
  • Matsypura, Dmytro
  • Neo, Emily
  • Prokhorov, Artem

Abstract

We formulate the problem of finding and estimating the optimal hierarchical Archimedean copula as an amended shortest path problem. The standard network flow problem is amended by certain constraints specific to copulas, which limit scalability of the problem. However, we show in dimensions as high as twenty that the new approach dominates the alternatives which usually require recursive estimation or full enumeration.

Suggested Citation

  • Matsypura, Dmytro & Neo, Emily & Prokhorov, Artem, 2016. "Estimation of Hierarchical Archimedean Copulas as a Shortest Path Problem," Economics Letters, Elsevier, vol. 149(C), pages 131-134.
  • Handle: RePEc:eee:ecolet:v:149:y:2016:i:c:p:131-134
    DOI: 10.1016/j.econlet.2016.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176516304438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2016.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hofert, Marius, 2011. "Efficiently sampling nested Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 57-70, January.
    2. Anatolyev, Stanislav & Khabibullin, Renat & Prokhorov, Artem, 2014. "An algorithm for constructing high dimensional distributions from distributions of lower dimension," Economics Letters, Elsevier, vol. 123(3), pages 257-261.
    3. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    4. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Górecki J. & Hofert M. & Holeňa M., 2017. "Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 75-87, January.
    2. Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    2. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    3. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    4. Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Étienne & Mtalai, Itre, 2017. "Hierarchical Archimedean copulas through multivariate compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 1-13.
    5. Nathan Uyttendaele, 2018. "On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison," Computational Statistics, Springer, vol. 33(2), pages 1047-1070, June.
    6. Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.
    7. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    8. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    9. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
    10. Martin Waltz & Abhay Kumar Singh & Ostap Okhrin, 2022. "Vulnerability-CoVaR: investigating the crypto-market," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1731-1745, September.
    11. Penikas, Henry, 2014. "Investment portfolio risk modelling based on hierarchical copulas," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 35(3), pages 18-38.
    12. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    13. Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Górecki J. & Hofert M. & Holeňa M., 2017. "Kendall’s tau and agglomerative clustering for structure determination of hierarchical Archimedean copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 75-87, January.
    15. Bedoui, Rihab & Braiek, Sana & Guesmi, Khaled & Chevallier, Julien, 2019. "On the conditional dependence structure between oil, gold and USD exchange rates: Nested copula based GJR-GARCH model," Energy Economics, Elsevier, vol. 80(C), pages 876-889.
    16. Song, Zhi & Mukherjee, Amitava & Zhang, Jiujun, 2021. "Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment," European Journal of Operational Research, Elsevier, vol. 289(1), pages 177-196.
    17. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    18. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    19. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    20. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.

    More about this item

    Keywords

    Network flow problem; Copulas;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:149:y:2016:i:c:p:131-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.