IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v78y2002i3p405-416.html
   My bibliography  Save this article

Carbon Offsets

Author

Listed:
  • Elizabeth A. Wilman
  • Mahen S. Mahendrarajah

Abstract

The Kyoto Protocol allows countries to credit their greenhouse gas inventory with the emissions captured from afforestation or reforestation, providing the potential for carbon polluters to pay tree planters to store carbon. Trades of sequestration services are complicated because of growing time and monitoring difficulties. A delayed-response, optimal-control model, considering both sequestration and emission reduction possibilities, is developed. The aim is to clarify the good that is being traded, and the role that time plays in defining the good, and the nature of related transactions. In general, principalagent contracts, rather than arms-length trades, would be expected.

Suggested Citation

  • Elizabeth A. Wilman & Mahen S. Mahendrarajah, 2002. "Carbon Offsets," Land Economics, University of Wisconsin Press, vol. 78(3), pages 405-416.
  • Handle: RePEc:uwp:landec:v:78:y:2002:i:3:p:405-416
    as

    Download full text from publisher

    File URL: http://le.uwpress.org/cgi/reprint/78/3/405
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Bondt, Raymond R, 1976. "Limit Pricing, Uncertain Entry, and the Entry Lag," Econometrica, Econometric Society, vol. 44(5), pages 939-946, September.
    2. Heaps, Terry & Neher, Philip A., 1979. "The economics of forestry when the rate of harvest is constrained," Journal of Environmental Economics and Management, Elsevier, vol. 6(4), pages 297-319, December.
    3. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olschewski, Roland & Benítez, Pablo C. & de Koning, G.H.J. & Schlichter, Tomás, 2005. "How attractive are forest carbon sinks? Economic insights into supply and demand of Certified Emission Reductions," Journal of Forest Economics, Elsevier, vol. 11(2), pages 77-94, September.
    2. Brian R. Copeland & M. Scott Taylor, 2017. "Environmental and resource economics: A Canadian retrospective," Canadian Journal of Economics, Canadian Economics Association, vol. 50(5), pages 1381-1413, December.
    3. Shaheen, Susan A. & Bejamin-Chung, Jade & Allen, Denise & Howe-Steiger, Linda, 2009. "Achieving California’s Land Use and Transportation Greenhouse Gas Emission Targets Under AB 32: An Exploration of Potential Policy Processes and Mechanisms," Institute of Transportation Studies, Working Paper Series qt8bm4t7w5, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    2. Wilman, Elizabeth A., 2011. "Carbon Sequestration in Agricultural Soils," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(01), pages 1-18, April.
    3. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    4. Gregmar Galinato & Shinsuke Uchida, 2010. "Evaluating Temporary Certified Emission Reductions in Reforestation and Afforestation Programs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(1), pages 111-133, May.
    5. Kooten, G. Cornelis Van, 2022. "The Impact of Carbon on Optimal Forest Rotation Ages: An Application to Coastal Forests in British Columbia," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322612, Agricultural and Applied Economics Association.
    6. Szajkó, Gabriella & Rácz, Viktor József & Kis, András, 2024. "The role of price incentives in enhancing carbon sequestration in the forestry sector of Hungary," Forest Policy and Economics, Elsevier, vol. 158(C).
    7. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    8. Grilli, Gianluca & Fratini, Roberto & Marone, Enrico & Sacchelli, Sandro, 2020. "A spatial-based tool for the analysis of payments for forest ecosystem services related to hydrogeological protection," Forest Policy and Economics, Elsevier, vol. 111(C).
    9. Centeno, Maria Luz N., 2000. "Deforestation In The Philippines: A Cge Modelling Approach," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123619, Australian Agricultural and Resource Economics Society.
    10. Dwivedi, Puneet & Bailis, Robert & Stainback, Andrew & Carter, Douglas R., 2012. "Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South," Ecological Economics, Elsevier, vol. 78(C), pages 63-69.
    11. Shaikh, Sabina L. & Sun, Lili & van Kooten, G. Cornelis, 2005. "Are Agricultural Values a Reliable Guide in Determining Landowners’ Decisions to Create Carbon Forest Sinks?," Working Papers 37017, University of Victoria, Resource Economics and Policy.
    12. McKenney, Daniel W. & Yemshanov, Denys & Fox, Glenn & Ramlal, Elizabeth, 2004. "Cost estimates for carbon sequestration from fast growing poplar plantations in Canada," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 345-358, June.
    13. Asante, Patrick & Armstrong, Glen W. & Adamowicz, Wiktor L., 2011. "Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter," Journal of Forest Economics, Elsevier, vol. 17(1), pages 3-17, January.
    14. Kim, C.S. & Lewandrowski, Jan & Sands, Ronald D. & Johansson, Robert C., 2011. "Permanence of Carbon Sequestered in Forests under Uncertainty," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103565, Agricultural and Applied Economics Association.
    15. Guthrie, Graeme & Kumareswaran, Dinesh, 2003. "Carbon Subsidies and Optimal Forest Management," Working Paper Series 3879, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    16. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    17. Nghiem, Nhung, 2014. "Optimal rotation age for carbon sequestration and biodiversity conservation in Vietnam," Forest Policy and Economics, Elsevier, vol. 38(C), pages 56-64.
    18. Tahvonen, Olli & Salo, Seppo, 1999. "Optimal Forest Rotation within SituPreferences," Journal of Environmental Economics and Management, Elsevier, vol. 37(1), pages 106-128, January.
    19. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    20. H. Böttcher & A. Freibauer & Y. Scholz & V. Gitz & Philippe Ciais & M. Mund & T. Wutzler & E.-D. Schulze, 2012. "Setting priorities for land management to mitigate climate change," Post-Print hal-00716172, HAL.

    More about this item

    JEL classification:

    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:78:y:2002:i:3:p:405-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.