IDEAS home Printed from https://ideas.repec.org/a/uii/jrambr/v4y2024i2p358-375id33738.html
   My bibliography  Save this article

Knowledge sharing and sustainable competitive advantage: Mediating role of innovation culture and MSMEs business performance

Author

Listed:
  • Meyna Cinta Ratulian
  • Sabihaini Sabihaini
  • Fauzilah Salleh
  • Januar Eko Prasetio

Abstract

This research aims to investigate how business performance (BP) and innovation culture (IC) mediate the relationship between knowledge sharing (KS) and sustainable competitive advantage (SCA) of MSMEs operating in Yogyakarta, Indonesia. The survey method was employed to gather the necessary data for this research. The population and sample consisted of 50 MSMEs. The unit of analysis in this study is the MSMEs fashionpreneur Jogja Fashion Dunia Incubation Program, which is represented by the owner and manager, who also serves as the respondent. The analysis method employed in this research is Partial Least Squares (PLS) using SmatPLS 4 software. The investigation results demonstrate that knowledge sharing has a significant impact on both the innovation culture and long-term competitive advantage. Additionally, the study reveals that the innovation culture significantly influences business performance and lasting competitive advantage. However, it is worth noting that business performance does not have a noticeable effect on sustainable competitive advantage. Furthermore, the study indicates that the relationship between knowledge sharing and sustainable competitive advantage is mediated by the innovation culture. On the other hand, when business performance acts as a mediator, the effect of the innovation culture and knowledge sharing on competitive advantage is indiscernible. To create exceptional customer value, policymakers and MSME management must showcase a firm dedication to innovation and connect it to supply chain agility, also known as SCA. Ultimately, this will result in comprehensive and enduring business performance.

Suggested Citation

  • Meyna Cinta Ratulian & Sabihaini Sabihaini & Fauzilah Salleh & Januar Eko Prasetio, 2024. "Knowledge sharing and sustainable competitive advantage: Mediating role of innovation culture and MSMEs business performance," Asian Management and Business Review, Master of Management, Department of Management, Faculty of Business and Economics Universitas Islam Indonesia, vol. 4(2), pages 358-375.
  • Handle: RePEc:uii:jrambr:v:4:y:2024:i:2:p:358-375:id:33738
    as

    Download full text from publisher

    File URL: https://journal.uii.ac.id/AMBR/article/view/33738
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Farah Muhammad Hadjar & Titik Kusmantini & Sabihaini Sabihaini, 2023. "The antecedence of green supply chain management and its impact on business performance in the traditional fashion industry," Asian Management and Business Review, Master of Management, Department of Management, Faculty of Business and Economics Universitas Islam Indonesia, vol. 3(2), pages 167-183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans-Joachim Schramm & Carolin Nicole Czaja & Michael Dittrich & Matthias Mentschel, 2019. "Current Advancements of and Future Developments for Fourth Party Logistics in a Digital Future," Logistics, MDPI, vol. 3(1), pages 1-17, February.
    2. Leonardo de Assis Santos & Leonardo Marques, 2022. "Big data analytics for supply chain risk management: research opportunities at process crossroads," Post-Print hal-03766121, HAL.
    3. Papanagnou, Christos & Seiler, Andreas & Spanaki, Konstantina & Papadopoulos, Thanos & Bourlakis, Michael, 2022. "Data-driven digital transformation for emergency situations: The case of the UK retail sector," International Journal of Production Economics, Elsevier, vol. 250(C).
    4. Fu, Shuke & Ge, Yingchen & Hao, Yu & Peng, Jiachao & Tian, Jiali, 2024. "Energy supply chain efficiency in the digital era: Evidence from China's listed companies," Energy Economics, Elsevier, vol. 134(C).
    5. Vendrell-Herrero, Ferran & Bustinza, Oscar F. & Opazo-Basaez, Marco, 2021. "Information technologies and product-service innovation: The moderating role of service R&D team structure," Journal of Business Research, Elsevier, vol. 128(C), pages 673-687.
    6. Anhang Chen & Huiqin Zhang & Yuxiang Zhang & Junwei Zhao, 2024. "Manufacturers’ digital transformation under carbon cap-and-trade policy: investment strategy and environmental impact," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    7. Yu, Wantao & Zhao, Gen & Liu, Qi & Song, Yongtao, 2021. "Role of big data analytics capability in developing integrated hospital supply chains and operational flexibility: An organizational information processing theory perspective," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    8. Videsh Desingh & Baskaran R, 2022. "Internet of Things adoption barriers in the Indian healthcare supply chain: An ISM‐fuzzy MICMAC approach," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(1), pages 318-351, January.
    9. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    10. Adem Emre & Seher Somuncu & Meltem Korkmaz & Ebru Demirci, 2024. "Conceptual awareness levels of digital logistics among Turkish university students," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    11. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    12. Jing-Xin Dong & Christian Hicks & Dongjun Li, 2020. "A heuristics based global navigation satellite system data reduction algorithm integrated with map-matching," Annals of Operations Research, Springer, vol. 290(1), pages 731-746, July.
    13. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    14. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    15. Shaik, Aqueeb Sohail & Nazrul, Asif & Alshibani, Safiya Mukhtar & Agarwal, Vaishali & Papa, Armando, 2024. "Environmental and economical sustainability and stakeholder satisfaction in SMEs. Critical technological success factors of big data analytics," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    16. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    17. Junming Liu & Weiwei Chen & Jingyuan Yang & Hui Xiong & Can Chen, 2022. "Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 769-789, March.
    18. Meriem Riad & Mohamed Naimi & Chafik Okar, 2024. "Enhancing Supply Chain Resilience Through Artificial Intelligence: Developing a Comprehensive Conceptual Framework for AI Implementation and Supply Chain Optimization," Logistics, MDPI, vol. 8(4), pages 1-26, November.
    19. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    20. Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uii:jrambr:v:4:y:2024:i:2:p:358-375:id:33738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Yuliani (email available below). General contact details of provider: https://journal.uii.ac.id/AMBR/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.