IDEAS home Printed from https://ideas.repec.org/a/tuk/qipqip/v15y2011i16.html
   My bibliography  Save this article

Comparison of Different Approaches to the Cutting Plan Scheduling

Author

Listed:
  • Peter Bober

Abstract

Allocation of specific cutting plans and their scheduling to individual cutting machines presents a combinatorial optimization problem. In this respect, various approaches and methods are used to arrive to a viable solution. The paper reports three approaches represented by three discreet optimization methods. The first one is back-tracing algorithm and serves as a reference to verify functionality of the other two ones. The second method is optimization using genetic algorithms, and the third one presents heuristic approach to optimization based on anticipated properties of an optimal solution. Research results indicate that genetic algorithms are demanding to calculate though not dependant on the selected objective function. Heuristic algorithm is fast but dependant upon anticipated properties of the optimal solution. Hence, at change of the objective function it has to be changed. When the scheduling by genetic algorithms is solvable in a sufficiently short period of time, it is more appropriate from the practical point than the heuristic algorithm. The back-tracing algorithm usually does not provide a result in a feasible period of time.

Suggested Citation

  • Peter Bober, 2011. "Comparison of Different Approaches to the Cutting Plan Scheduling," Quality Innovation Prosperity, Technical University of Košice, Department of integrated management, vol. 15(1).
  • Handle: RePEc:tuk:qipqip:v:15:y:2011:i:1:6
    as

    Download full text from publisher

    File URL: http://www.qip-journal.eu/index.php/QIP/article/download/35/23
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhaenens, C. & Lemesre, J. & Talbi, E.G., 2010. "K-PPM: A new exact method to solve multi-objective combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 200(1), pages 45-53, January.
    2. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    3. Jaszkiewicz, Andrzej, 2002. "Genetic local search for multi-objective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 137(1), pages 50-71, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    2. Pritibhushan Sinha, 2009. "Assignment problems with changeover cost," Annals of Operations Research, Springer, vol. 172(1), pages 447-457, November.
    3. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    4. Ágoston, Kolos Csaba & Biró, Péter & Kováts, Endre & Jankó, Zsuzsanna, 2022. "College admissions with ties and common quotas: Integer programming approach," European Journal of Operational Research, Elsevier, vol. 299(2), pages 722-734.
    5. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2014. "A Birnbaum-importance based genetic local search algorithm for component assignment problems," Annals of Operations Research, Springer, vol. 212(1), pages 185-200, January.
    6. Cai, Zhiqiang & Si, Shubin & Sun, Shudong & Li, Caitao, 2016. "Optimization of linear consecutive-k-out-of-n system with a Birnbaum importance-based genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 248-258.
    7. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    8. Nicolas Jozefowiez & Gilbert Laporte & Frédéric Semet, 2012. "A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 554-564, November.
    9. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    10. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    11. Yokoya, Daisuke & Duin, Cees W. & Yamada, Takeo, 2011. "A reduction approach to the repeated assignment problem," European Journal of Operational Research, Elsevier, vol. 210(2), pages 185-193, April.
    12. Walteros, Jose L. & Vogiatzis, Chrysafis & Pasiliao, Eduardo L. & Pardalos, Panos M., 2014. "Integer programming models for the multidimensional assignment problem with star costs," European Journal of Operational Research, Elsevier, vol. 235(3), pages 553-568.
    13. Aidin Rezaeian & Hamidreza Koosha & Mohammad Ranjbar & Saeed Poormoaied, 2024. "The assignment of project managers to projects in an uncertain dynamic environment," Annals of Operations Research, Springer, vol. 341(2), pages 1107-1134, October.
    14. Sato, Hiroyuki & Aguirre, Hernan E. & Tanaka, Kiyoshi, 2007. "Local dominance and local recombination in MOEAs on 0/1 multiobjective knapsack problems," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1708-1723, September.
    15. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2017. "The Quadrant Shrinking Method: A simple and efficient algorithm for solving tri-objective integer programs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 873-885.
    16. Krumke, Sven O. & Thielen, Clemens, 2013. "The generalized assignment problem with minimum quantities," European Journal of Operational Research, Elsevier, vol. 228(1), pages 46-55.
    17. Batel Ziv & Yisrael Parmet, 2022. "Improving nonconformity responsibility decisions: a semi-automated model based on CRISP-DM," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 657-667, April.
    18. Talmor, Irit, 2022. "Solving the problem of maximizing diversity in public sector teams," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    19. Zheng, Feifeng & Cheng, Yongxi & Xu, Yinfeng & Liu, Ming, 2013. "Competitive strategies for an online generalized assignment problem with a service consecution constraint," European Journal of Operational Research, Elsevier, vol. 229(1), pages 59-66.
    20. Ágoston, Kolos Csaba & Biró, Péter & Szántó, Richárd, 2018. "Stable project allocation under distributional constraints," Operations Research Perspectives, Elsevier, vol. 5(C), pages 59-68.

    More about this item

    Keywords

    optimization; scheduling; back-tracing; genetic algorithms; heuristic algorithm;
    All these keywords.

    JEL classification:

    • Z - Other Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tuk:qipqip:v:15:y:2011:i:1:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Bober (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.