IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/y13y2013i2p302-314.html
   My bibliography  Save this article

A command for Laplace regression

Author

Listed:
  • Matteo Bottai

    (Karolinska Institutet)

  • Nicola Orsini

    (Karolinska Institutet)

Abstract

We present the new laplace command for estimating Laplace regression, which models quantiles of a possibly censored outcome variable given covariates. We illustrate laplace with an example from a clinical trial on survival in patients with metastatic renal carcinoma. We also report the results of a small simulation study. Copyright 2013 by StataCorp LP.

Suggested Citation

  • Matteo Bottai & Nicola Orsini, 2013. "A command for Laplace regression," Stata Journal, StataCorp LP, vol. 13(2), pages 302-314, June.
  • Handle: RePEc:tsj:stataj:y:13:y:2013:i:2:p:302-314
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj13-2/st0294/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0294
    File Function: link to article purchase
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    2. Dean Jolliffe & Bohdan Krushelnytskyy & Anastassia Semykina, 2001. "Censored least absolute deviations estimator: CLAD," Stata Technical Bulletin, StataCorp LP, vol. 10(58).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manda, Julius & Feleke, Shiferaw & Mutungi, Christopher & Tufa, Adane H. & Mateete, Bekunda & Abdoulaye, Tahirou & Alene, Arega D., 2024. "Assessing the speed of improved postharvest technology adoption in Tanzania: The role of social learning and agricultural extension services," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    2. Frumento, Paolo & Bottai, Matteo, 2017. "An estimating equation for censored and truncated quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 53-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph M. Schmidt & Harald Tauchmann, 2010. "Heterogeneity in the Intergenerational Transmission of Alcohol Consumption – A Quantile Regression Approach," Ruhr Economic Papers 0186, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    2. Kyyrä, Tomi & Korkeamäki, Ossi, 2008. "A Distributional Analysis of Displacement Costs in an Economic Depression and Recovery," Discussion Papers 465, VATT Institute for Economic Research.
    3. Schmidt, Christoph M. & Tauchmann, Harald, 2011. "Heterogeneity in the intergenerational transmission of alcohol consumption: A quantile regression approach," Journal of Health Economics, Elsevier, vol. 30(1), pages 33-42, January.
    4. repec:zbw:rwirep:0186 is not listed on IDEAS
    5. Andrés Langebaek R. & Diego Vásquez E., 2007. "Determinantes de la actividad innovadora en la industria manufacturera colombiana," Borradores de Economia 433, Banco de la Republica de Colombia.
    6. Hiau Joo Kee, 2005. "Glass Ceiling or Sticky Floor? Exploring the Australian Gender Pay Gap using Quantile Regression and Counterfactual Decomposition Methods," CEPR Discussion Papers 487, Centre for Economic Policy Research, Research School of Economics, Australian National University.
    7. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    8. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    9. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    10. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    11. Barton Hughes Hamilton, 1997. "Racial discrimination and professional basketball salaries in the 1990s," Applied Economics, Taylor & Francis Journals, vol. 29(3), pages 287-296.
    12. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    13. Ying Cui & Limin Peng, 2022. "Assessing dynamic covariate effects with survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 675-699, October.
    14. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    15. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    16. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    17. Khan, Shakeeb, 2001. "Two-stage rank estimation of quantile index models," Journal of Econometrics, Elsevier, vol. 100(2), pages 319-355, February.
    18. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Mark Ottoni Wilhelm, 2008. "Practical Considerations for Choosing Between Tobit and SCLS or CLAD Estimators for Censored Regression Models with an Application to Charitable Giving," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(4), pages 559-582, August.
    20. Thanasis Stengos & Dianqin Wang, 2007. "An algorithm for censored quantile regressions," Economics Bulletin, AccessEcon, vol. 3(1), pages 1-9.
    21. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:y:13:y:2013:i:2:p:302-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.