IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v14y2014i4p863-883.html
   My bibliography  Save this article

Analysis of partially observed clustered data using generalized estimating equations and multiple imputation

Author

Listed:
  • Kathryn M. Aloisio

    (Smith College)

  • Sonja A. Swanson

    (Harvard School of Public Health)

  • Nadia Micali

    (University College London)

  • Alison Field

    (Harvard School of Public Health)

  • Nicholas J. Horton

    (Amherst College)

Abstract

Clustered data arise in many settings, particularly within the social and biomedical sciences. For example, multiple-source reports are commonly collected in child and adolescent psychiatric epidemiologic studies where researchers use various informants (for instance, parents and adolescents) to provide a holistic view of a subject’s symptoms. Fitzmaurice et al. (1995, American Journal of Epidemiology 142: 1194–1203) have described estimation of multiple-source models using a standard generalized estimating equation (GEE) framework. However, these studies often have missing data because additional stages of consent and assent are required. The usual GEE is unbiased when data are missing completely at random in the context of Little and Rubin (2002, Statistical Analysis with Missing Data [Wiley]). This is a strong assumption that may not be tenable. Other options, such as the weighted GEE, are computationally challenging when missingness is nonmonotone. Multiple imputation is an attractive method to fit incomplete data models while requiring only the less restrictive missing-at-random assumption. Previously, estimation of partially observed clustered data was computationally challenging. However, recent developments in Stata have facilitated using them in practice. We demonstrate how to use multiple imputation in conjunction with a GEE to investigate the prevalence of eating disorder symptoms in adolescents as reported by parents and adolescents and to determine the factors associated with concordance and prevalence. The methods are motivated by the Avon Longitudinal Study of Parents and their Children, a cohort study that enrolled more than 14,000 pregnant mothers in 1991–92 and has followed the health and development of their children at regular intervals. While point estimates for the missing-atrandom model were fairly similar to those for the GEE under missing completely at random, the missing-at-random model had smaller standard errors and required less stringent assumptions regarding missingness. Copyright 2014 by StataCorp LP.

Suggested Citation

  • Kathryn M. Aloisio & Sonja A. Swanson & Nadia Micali & Alison Field & Nicholas J. Horton, 2014. "Analysis of partially observed clustered data using generalized estimating equations and multiple imputation," Stata Journal, StataCorp LP, vol. 14(4), pages 863-883, December.
  • Handle: RePEc:tsj:stataj:v:14:y:2014:i:4:p:863-883
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj14-4/st0363/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0363
    File Function: link to article purchase
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jumah, Adusei & Somua-Wiafe, Ernest & Apom, Barnabas, 2021. "On the willingness to exit street hawking," IHS Working Paper Series 34, Institute for Advanced Studies.
    2. Liu, Li & Xiang, Liming, 2019. "Missing covariate data in generalized linear mixed models with distribution-free random effects," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 1-16.
    3. Llano, Carlos & Pardo, Juan & Pérez-Balsalobre, Santiago & Pérez, Julián, 2023. "Estimating multicountry tourism flows by transport mode," Annals of Tourism Research, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:14:y:2014:i:4:p:863-883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.