IDEAS home Printed from https://ideas.repec.org/a/tek/journl/v7y2018i1p1-16.html
   My bibliography  Save this article

Forecasting Inflation Using Summary Statistics of Survey Expectations: A Machine-Learning Approach

Author

Listed:
  • Bige Küçükefe

    (Namık Kemal University)

Abstract

This paper aims to produce more accurate short-term inflation forecasts based on surveys of expectations by employing machine-learning algorithms. By treating inflation forecasting as an estimation problem consisting of a label (inflation) and features (summary statistics of surveys of expectations data), we train a suite of machine-learning models, namely, Linear Regression, Bayesian Ridge Regression, Kernel Ridge Regression, Random Forests Regression, and Support Vector Machines, to forecast the consumer-price inflation (CPI) in Turkey. We employ the Time Series Cross Validation Procedure to ensure that the training data exclude forecast horizon data. Our results indicate that these machine-learning algorithms outperform the official forecasts of the Central Bank of Turkey (CBT) and a univariate model.

Suggested Citation

  • Bige Küçükefe, 2018. "Forecasting Inflation Using Summary Statistics of Survey Expectations: A Machine-Learning Approach," Ekonomi-tek - International Economics Journal, Turkish Economic Association, vol. 7(1), pages 1-16, January.
  • Handle: RePEc:tek:journl:v:7:y:2018:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://ekonomitek.org/pdffile/no19_makale1.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    2. Magdalena Grothe & Aidan Meyler, 2018. "Inflation Forecasts: Are Market-Based and Survey-Based Measures Informative?," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 9(1), pages 171-188, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuest, Angela & Schmidt, Torsten, 2020. "Inflation expectation uncertainty in a New Keynesian framework," Ruhr Economic Papers 867, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    2. Simón Sosvilla-Rivero & María del Carmen Ramos-Herrera, 2018. "Inflation, real economic growth and unemployment expectations: an empirical analysis based on the ECB survey of professional forecasters," Applied Economics, Taylor & Francis Journals, vol. 50(42), pages 4540-4555, September.
    3. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    4. Baumann, Ursel & Darracq Pariès, Matthieu & Westermann, Thomas & Riggi, Marianna & Bobeica, Elena & Meyler, Aidan & Böninghausen, Benjamin & Fritzer, Friedrich & Trezzi, Riccardo & Jonckheere, Jana & , 2021. "Inflation expectations and their role in Eurosystem forecasting," Occasional Paper Series 264, European Central Bank.
    5. Bańbura, Marta & Leiva-León, Danilo & Menz, Jan-Oliver, 2021. "Do inflation expectations improve model-based inflation forecasts?," Discussion Papers 48/2021, Deutsche Bundesbank.
    6. Pedro Pires Ribeiro & José Dias Curto, 2018. "How do zero-coupon inflation swaps predict inflation rates in the euro area? Evidence of efficiency and accuracy on 1-year contracts," Empirical Economics, Springer, vol. 54(4), pages 1451-1475, June.
    7. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    8. Fuest, Angela & Schmidt, Torsten, 2017. "Inflation expectation uncertainty, inflation and the output gap," Ruhr Economic Papers 673, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    9. Carlos Medel, 2017. "Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
    10. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    11. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
    12. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    13. Kevin Lansing, 2009. "Time Varying U.S. Inflation Dynamics and the New Keynesian Phillips Curve," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(2), pages 304-326, April.
    14. Robert Lehmann & Antje Weyh, 2016. "Forecasting Employment in Europe: Are Survey Results Helpful?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 81-117, September.
    15. Wändi Bruine de Bruin & Michael F. Bryan & Simon M. Potter & Giorgio Topa & Wilbert Van der Klaauw, 2008. "Rethinking the measurement of household inflation expectations: preliminary findings," Staff Reports 359, Federal Reserve Bank of New York.
    16. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    17. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    18. Vijay VICTOR & Maria FEKETE FARKAS & Florence JEESON, 2018. "Inflation unemployment dynamics in Hungary – A structured cointegration and vector error correction model approach," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(615), S), pages 195-204, Summer.
    19. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    20. Tule, Moses K. & Salisu, Afees A. & Chiemeke, Charles C., 2019. "Can agricultural commodity prices predict Nigeria's inflation?," Journal of Commodity Markets, Elsevier, vol. 16(C).

    More about this item

    Keywords

    Machine learning; forecast evaluation; inflation forecasting; surveys of expectations; summary statistics;
    All these keywords.

    JEL classification:

    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tek:journl:v:7:y:2018:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ercan Uygur (email available below). General contact details of provider: https://edirc.repec.org/data/tekkkea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.