IDEAS home Printed from https://ideas.repec.org/a/tdt/annals/vxixy2013p114-121.html
   My bibliography  Save this article

Symptoms of Bankruptcy and Prediction Models of Bankruptcy Risk

Author

Listed:
  • CIOTINA Daniela

    (“Alexandru Ioan Cuza†University, Faculty of Economics and Business Administration, Iasi)

  • CIOTINA Ioan Marius

    (“Alexandru Ioan Cuza†University, Faculty of Economics and Business Administration, Iasi)

Abstract

This paper makes a brief literature review on symptoms of bankruptcy and prediction models of bankruptcy risk. When it comes to bankruptcy we must start from the symptoms that lead to the financial failure of a company. Financial failure or bankruptcy of a company is an event that may cause losses to banks, suppliers, shareholders and the wider community; they are interested in predicting bankruptcy of a company and how and when it will fail. Bankruptcy is often a consequence of the inefficiency of an enterprise and the decision of stakeholders to recover investments by issuing a declaration of bankruptcy. A survey of the literature shows that most international studies in failure prediction involving MDA (Multiple Discrimination Analysis).

Suggested Citation

  • CIOTINA Daniela & CIOTINA Ioan Marius, 2013. "Symptoms of Bankruptcy and Prediction Models of Bankruptcy Risk," Anale. Seria Stiinte Economice. Timisoara, Faculty of Economics, Tibiscus University in Timisoara, vol. 0, pages 114-121, May.
  • Handle: RePEc:tdt:annals:v:xix:y:2013:p:114-121
    as

    Download full text from publisher

    File URL: http://fse.tibiscus.ro/anale/Lucrari2013/Lucrari_vol_XIX_2013_017.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    2. Catherine Refait, 2004. "La prévision de la faillite fondée sur l’analyse financière de l’entreprise : un état des lieux," Économie et Prévision, Programme National Persée, vol. 162(1), pages 129-147.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Greene, William, 1998. "Sample selection in credit-scoring models1," Japan and the World Economy, Elsevier, vol. 10(3), pages 299-316, July.
    5. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    6. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    7. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    8. Altman, Edward I., 1984. "The success of business failure prediction models : An international survey," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 171-198, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefanita Susu, 2014. "Analysis Model Using Robu Mironiuc In Predicting Risk Of Bankruptcy Romanian Companies," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 80-86, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    2. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
    3. Laitinen, Erkki K., 2007. "Classification accuracy and correlation: LDA in failure prediction," European Journal of Operational Research, Elsevier, vol. 183(1), pages 210-225, November.
    4. García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
    5. Sami Ben Jabeur & Youssef Fahmi, 2014. "Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative," Working Papers 2014-317, Department of Research, Ipag Business School.
    6. Onofrei, Mihaela & Lupu, Dan, 2014. "The modelling of forecasting the bankruptcy in Romania," MPRA Paper 95511, University Library of Munich, Germany.
    7. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    8. du Jardin, Philippe & Séverin, Eric, 2012. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
    9. Fayçal Mraihi & Inane Kanzari, 2019. "Predicting financial distress of companies: Comparison between multivariate discriminant analysis and multilayer perceptron for Tunisian case," Working Papers 1328, Economic Research Forum, revised 21 Aug 2019.
    10. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    11. Hamid Waqas & Rohani Md-Rus, 2018. "Predicting financial distress: Applicability of O-score model for Pakistani firms," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(2), pages 389-401, April.
    12. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    13. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    14. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    15. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    16. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
    17. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    18. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    19. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    20. du Jardin, Philippe, 2009. "Bankruptcy prediction models: How to choose the most relevant variables?," MPRA Paper 44380, University Library of Munich, Germany.

    More about this item

    Keywords

    bankruptcy; MDA; symptoms; predicting models; literature review;
    All these keywords.

    JEL classification:

    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tdt:annals:v:xix:y:2013:p:114-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ramona Violeta Vasilescu (email available below). General contact details of provider: https://edirc.repec.org/data/fettiro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.