IDEAS home Printed from https://ideas.repec.org/a/taf/uteexx/v64y2019i3p196-226.html
   My bibliography  Save this article

GAN-MP hybrid heuristic algorithm for non-convex portfolio optimization problem

Author

Listed:
  • Yerin Kim
  • Daemook Kang
  • Mingoo Jeon
  • Chungmok Lee

Abstract

During recent decades, the traditional Markowitz model has been extended for asset cardinality, active share, and tracking-error constraints, which were introduced to overcome the drawbacks of the original Markowitz model. The resulting optimization problems, however, are often very difficult to solve, whereas those of the original Markowitz model are easily solvable. In order to resolve the portfolio optimization problem for the new extensions, we developed a novel heuristic algorithm that combines GAN (Generative Adversarial Networks) with mathematical programming: the GAN-MP hybrid heuristic algorithm. To the best of our knowledge, this is the first attempt to bridge neural networks (NN) and mathematical programming to tackle a real-world portfolio optimization problem. Computational experiments with real-life stock data show that our algorithm significantly outperforms the existing non-linear optimization solvers.

Suggested Citation

  • Yerin Kim & Daemook Kang & Mingoo Jeon & Chungmok Lee, 2019. "GAN-MP hybrid heuristic algorithm for non-convex portfolio optimization problem," The Engineering Economist, Taylor & Francis Journals, vol. 64(3), pages 196-226, July.
  • Handle: RePEc:taf:uteexx:v:64:y:2019:i:3:p:196-226
    DOI: 10.1080/0013791X.2019.1620391
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0013791X.2019.1620391
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0013791X.2019.1620391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Eckerli & Joerg Osterrieder, 2021. "Generative Adversarial Networks in finance: an overview," Papers 2106.06364, arXiv.org, revised Jul 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uteexx:v:64:y:2019:i:3:p:196-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTEE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.