IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v54y2022i3p271-285.html
   My bibliography  Save this article

A data-driven recurrent event model for system degradation with imperfect maintenance actions

Author

Listed:
  • Akash Deep
  • Shiyu Zhou
  • Dharmaraj Veeramani

Abstract

Although a large number of degradation models for industrial systems have been proposed by researchers over the past few decades, the modeling of impacts of maintenance actions has been mostly limited to single-component systems. Among multi-component models, past work either ignores the general impact of maintenance, or is limited to studying failure interactions. In this article, we propose a multivariate imperfect maintenance model that models impacts of maintenance actions across sub-systems while considering continual operation of the unit. Another feature of the proposed model is that the maintenance actions can have any degree of impact on the sub-systems. In other words, we propose a multivariate recurrent event model with stochastic dependence, and for this model we present a two-stage approach which makes estimation scalable, thus practical for large-scale industrial applications. We also derive expressions for the Fisher information so as to conduct asymptotic statistical tests for the maintenance impact parameters. We demonstrate the scalability through numerical studies, and derive insights by applying the model on real-world maintenance records obtained from oil rigs. In the online supplemental material, we provide the following: (i) sketch of proof for likelihood, (ii) convergence analysis, (iii) contamination analysis, and (iv) a set of R codes to implement the current method.

Suggested Citation

  • Akash Deep & Shiyu Zhou & Dharmaraj Veeramani, 2022. "A data-driven recurrent event model for system degradation with imperfect maintenance actions," IISE Transactions, Taylor & Francis Journals, vol. 54(3), pages 271-285, March.
  • Handle: RePEc:taf:uiiexx:v:54:y:2022:i:3:p:271-285
    DOI: 10.1080/24725854.2021.1871687
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2021.1871687
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2021.1871687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    2. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Jiang, Weixin & Cui, Lirong & Liang, Xiaojun, 2024. "Optimal maintenance policies for three-unit parallel production systems considering yields," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Ji, Ziguang & Chen, Yi & Ma, Xiaobing & Cai, Yikun & Yang, Li, 2024. "Hierarchical condition-based maintenance planning for corrosion process considering natural environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:54:y:2022:i:3:p:271-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.