IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v53y2020i2p199-220.html
   My bibliography  Save this article

Optimal pricing policies for tandem queues: Asymptotic optimality

Author

Listed:
  • Tonghoon Suk
  • Xinchang Wang

Abstract

We study the optimal pricing problem for a tandem queueing system with an arbitrary number of stations, finite buffers, and blocking. The problem is formulated using a Markov decision process model with the objective to maximize the long-run expected time-average revenue or gain of the service provider. Our interest lies in comparing the performances of static and dynamic pricing policies in maximizing the gain. We show that the optimal static pricing policies perform as well as the optimal dynamic pricing policies when the buffer size at station 1 becomes large and the arrival rate is either small or large. More importantly, we propose two specific static pricing policies for systems with small and large arrival rates, respectively, and show that each proposed policy produces a gain converging to the optimal gain with an approximately exponential rate as the buffer size before station 1 becomes large. We learn from numerical results that the proposed static policies perform as well as optimal dynamic policies even for a moderate-sized buffer at station 1. We also learn that there exist cases where optimal static pricing policies are, however, neither optimal nor near-optimal.

Suggested Citation

  • Tonghoon Suk & Xinchang Wang, 2020. "Optimal pricing policies for tandem queues: Asymptotic optimality," IISE Transactions, Taylor & Francis Journals, vol. 53(2), pages 199-220, July.
  • Handle: RePEc:taf:uiiexx:v:53:y:2020:i:2:p:199-220
    DOI: 10.1080/24725854.2020.1783471
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2020.1783471
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2020.1783471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghosh, Souvik & Hassin, Refael, 2021. "Inefficiency in stochastic queueing systems with strategic customers," European Journal of Operational Research, Elsevier, vol. 295(1), pages 1-11.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:53:y:2020:i:2:p:199-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.