IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v52y2020i11p1189-1203.html
   My bibliography  Save this article

Models and algorithms for throughput improvement problem of serial production lines via downtime reduction

Author

Listed:
  • Mengyi Zhang
  • Andrea Matta

Abstract

Throughput is one of the key performance indicators for manufacturing systems, and its improvement remains an interesting topic in both industrial and academic fields. One way to achieve improvement is to reduce the downtime of unreliable machines. Along this direction, it is natural to pose questions about the optimal allocation of improvement effort to a set of machines and failure modes. This article develops mixed-integer linear programming models to improve system throughput by reducing downtime in the case of multi-stage serial lines. The models take samples of processing time, uptime and downtime as input, generated from random distributions or collected from real system. To improve computational efficiency while guaranteeing the exact optimality of the solution, algorithms based on Benders Decomposition and discrete-event relationships of serial lines are proposed. Numerical cases show that the solution approach can significantly improve efficiency. The proposed modeling and algorithm is applied to throughput improvement of various systems, including a long line and a multi-failure system, and also to the downtime bottleneck detection problem. Comparison with state-of-the-art approaches shows the effectiveness of the approach. Supplementary materials are available for this article. Go to the publisher’s online edition of IISE Transactions.

Suggested Citation

  • Mengyi Zhang & Andrea Matta, 2020. "Models and algorithms for throughput improvement problem of serial production lines via downtime reduction," IISE Transactions, Taylor & Francis Journals, vol. 52(11), pages 1189-1203, November.
  • Handle: RePEc:taf:uiiexx:v:52:y:2020:i:11:p:1189-1203
    DOI: 10.1080/24725854.2019.1700431
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2019.1700431
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2019.1700431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artur Dmowski & Jakub Bis, 2021. "An Optimal Algorithm of Material Reserves Management based on Probabilistic Model," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 179-188.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:52:y:2020:i:11:p:1189-1203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.