IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v50y2018i5p448-462.html
   My bibliography  Save this article

Statistical process control procedures for functional data with systematic local variations

Author

Listed:
  • Young-Seon Jeong
  • Myong K. Jeong
  • Jye-Chyi Lu
  • Ming Yuan
  • Jionghua (Judy) Jin

Abstract

Many engineering studies for manufacturing processes, such as for quality monitoring and fault detection, consist of complicated functional data with sharp changes. That is, the data curves in these studies exhibit large local variations. This article proposes a wavelet-based local random-effect model that characterizes the variations within multiple curves in certain local regions. An integrated mean and variance thresholding procedure is developed to address the large number of parameters in both the mean and variance models and keep the model simple and fit the data curves well. Guidelines are provided to select the regularization parameters in the penalized wavelet-likelihood method used for the parameter estimations. The proposed mean and variance thresholding procedure is used to develop new statistical procedures for process monitoring with complicated functional data. A real-life case study shows that the proposed procedure is much more effective in detecting local variations than existing techniques extended from methods based on a single data curve.

Suggested Citation

  • Young-Seon Jeong & Myong K. Jeong & Jye-Chyi Lu & Ming Yuan & Jionghua (Judy) Jin, 2018. "Statistical process control procedures for functional data with systematic local variations," IISE Transactions, Taylor & Francis Journals, vol. 50(5), pages 448-462, May.
  • Handle: RePEc:taf:uiiexx:v:50:y:2018:i:5:p:448-462
    DOI: 10.1080/24725854.2017.1419315
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2017.1419315
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2017.1419315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansouri, S. Afshin & Golmohammadi, Davood & Miller, Jason, 2019. "The moderating role of master production scheduling method on throughput in job shop systems," International Journal of Production Economics, Elsevier, vol. 216(C), pages 67-80.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:50:y:2018:i:5:p:448-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.