IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v42y2010i11p779-792.html
   My bibliography  Save this article

A closed-loop supply chain network design problem with integrated forward and reverse channel decisions

Author

Listed:
  • Gopalakrishnan Easwaran
  • Halit Üster

Abstract

This article considers a multi-product closed-loop logistics network design problem with hybrid manufacturing/remanufacturing facilities and finite-capacity hybrid distribution/collection centers to serve a set of retail locations. First, a mixed integer linear program is presented that determines the optimal solution that characterizes facility locations, along with the integrated forward and reverse flows such that the total cost of facility location, processing, and transportation associated with forward and reverse flows in the network is minimized. Second, a solution method based on Benders' decomposition with strengthened Benders' cuts for improved computational efficiencies is devised. In addition to this method, an alternative formulation is presented and a new dual solution method for the associated Benders' decomposition to obtain a different set of strengthened Benders' cuts is developed. In the Benders' decomposition framework, the strengthened cuts obtained from original and alternative formulations simultaneously are used to obtain an improved efficiency. Computational results illustrating the performance of the solution algorithms in terms of both solution quality and time are presented. It is inferred that the simultaneous use of the strengthened cuts obtained using different formulations facilitates tighter bounds and improves computational efficiency of Benders' algorithm.

Suggested Citation

  • Gopalakrishnan Easwaran & Halit Üster, 2010. "A closed-loop supply chain network design problem with integrated forward and reverse channel decisions," IISE Transactions, Taylor & Francis Journals, vol. 42(11), pages 779-792.
  • Handle: RePEc:taf:uiiexx:v:42:y:2010:i:11:p:779-792
    DOI: 10.1080/0740817X.2010.504689
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2010.504689
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2010.504689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Lingxian & Meng, Fanyong, 2020. "A human disease transmission inspired dynamic model for closed-loop supply chain management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    2. Min Huang & Pengxing Yi & Tielin Shi & Lijun Guo, 2018. "A modal interval based method for dynamic decision model considering uncertain quality of used products in remanufacturing," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 925-935, April.
    3. He, Yuanjie, 2015. "Acquisition pricing and remanufacturing decisions in a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 163(C), pages 48-60.
    4. Accorsi, Riccardo & Manzini, Riccardo & Pini, Chiara & Penazzi, Stefano, 2015. "On the design of closed-loop networks for product life cycle management: Economic, environmental and geography considerations," Journal of Transport Geography, Elsevier, vol. 48(C), pages 121-134.
    5. S.A. Torabi & J. Namdar & S.M. Hatefi & F. Jolai, 2016. "An enhanced possibilistic programming approach for reliable closed-loop supply chain network design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1358-1387, March.
    6. Ali Pedram & Shahryar Sorooshian & Freselam Mulubrhan & Afshin Abbaspour, 2023. "Incorporating Vehicle-Routing Problems into a Closed-Loop Supply Chain Network Using a Mixed-Integer Linear-Programming Model," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    7. De, Manoranjan & Giri, B.C., 2020. "Modelling a closed-loop supply chain with a heterogeneous fleet under carbon emission reduction policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    8. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    9. Zhi-Hai Zhang & Gemma Berenguer & Zuo-Jun (Max) Shen, 2015. "A Capacitated Facility Location Model with Bidirectional Flows," Transportation Science, INFORMS, vol. 49(1), pages 114-129, February.
    10. R.S. Rogulin, 2020. "Modeling of Promising Interaction Between a Timber Industry Enterprise and a Commodity Exchange in Russia," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 19(4), pages 489-511.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:42:y:2010:i:11:p:779-792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.