IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v41y2009i12p1080-1095.html
   My bibliography  Save this article

Predictive/reactive scheduling with controllable processing times and earliness-tardiness penalties

Author

Listed:
  • Ayten Turkcan
  • M. Akturk
  • Robert Storer

Abstract

In this study, a machine scheduling problem with controllable processing times in a parallel-machine environment is considered. The objectives are the minimization of manufacturing cost, which is a convex function of processing time, and total weighted earliness and tardiness. It is assumed that parts have job-dependent earliness and tardiness penalties and distinct due dates, and idle time is allowed. The problem is formulated as a time-indexed integer programming model with discrete processing time alternatives for each part. A linear-relaxation-based algorithm is used to assign the parts to the machines and to find a sequence on each machine. A non-linear programming model is proposed to find the optimal starting and processing times of the parts for a given sequence. The proposed non-linear programming model is converted to a minimum-cost network flow model by piecewise linearization of the convex manufacturing cost in the objective function. The proposed method is used to find initial schedules in predictive scheduling. The proposed models are revised to incorporate a stability measure for reacting to unexpected disruptions such as machine breakdown, arrival of a new job, delay in the arrival or the shortage of materials in reactive scheduling.

Suggested Citation

  • Ayten Turkcan & M. Akturk & Robert Storer, 2009. "Predictive/reactive scheduling with controllable processing times and earliness-tardiness penalties," IISE Transactions, Taylor & Francis Journals, vol. 41(12), pages 1080-1095.
  • Handle: RePEc:taf:uiiexx:v:41:y:2009:i:12:p:1080-1095
    DOI: 10.1080/07408170902905995
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07408170902905995
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07408170902905995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iwona Paprocka & Bożena Skołud, 2017. "A hybrid multi-objective immune algorithm for predictive and reactive scheduling," Journal of Scheduling, Springer, vol. 20(2), pages 165-182, April.
    2. Ali Kordmostafapour & Javad Rezaeian & Iraj Mahdavi & Mahdi Yar Farjad, 2022. "Scheduling unrelated parallel machine problem with multi-mode processing times and batch delivery cost," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1438-1470, December.
    3. Borgonjon, Tessa & Maenhout, Broos, 2022. "An exact approach for the personnel task rescheduling problem with task retiming," European Journal of Operational Research, Elsevier, vol. 296(2), pages 465-484.
    4. Ajay Surendrarao Bhongade & Prakash Manohar Khodke & Ateekh Ur Rehman & Manoj Dattatray Nikam & Prathamesh Dattatray Patil & Pramod Suryavanshi, 2023. "Managing Disruptions in a Flow-Shop Manufacturing System," Mathematics, MDPI, vol. 11(7), pages 1-22, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:41:y:2009:i:12:p:1080-1095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.