IDEAS home Printed from https://ideas.repec.org/a/taf/ufajxx/v58y2002i5p87-97.html
   My bibliography  Save this article

Model Choice and Value-at-Risk Performance

Author

Listed:
  • Chris Brooks
  • Gita Persand

Abstract

Broad agreement exists among both the investment banking and regulatory communities that the use of internal risk management models is an efficient means for calculating capital risk requirements. The determination of model parameters laid down by the Basle Committee on Banking Supervision as necessary for estimating and evaluating the capital adequacies, however, has received little academic scrutiny. We investigate a number of issues of statistical modeling in the context of determining market-based capital risk requirements. We highlight several potentially serious pitfalls in commonly applied methodologies and conclude that simple methods for calculating value at risk often provide superior performance to complex procedures. Our results thus have important implications for risk managers and market regulators. Broad agreement exists in both the investment banking and regulatory communities that the use of internal risk management models can provide an efficient means for calculating capital risk requirements. The determination of the model parameters necessary for estimating and evaluating the capital adequacies laid down by the Basle Committee on Banking Supervision, however, has received little academic scrutiny.We extended recent research in this area by evaluating the statistical framework proposed by the Basle Committee and by comparing several alternative ways to estimate capital adequacy. The study we report also investigated a number of issues concerning statistical modeling in the context of determining market-based capital risk requirements. We highlight in this article several potentially serious pitfalls in commonly applied methodologies.Using data for 1 January 1980 through 25 March 1999, we calculated value at risk (VAR) for six assets—three for the United Kingdom and three for the United States. The U.K. series consisted of the FTSE All Share Total Return Index, the FTA British Government Bond Index (for bonds of more than 15 years), and the Reuters Commodities Price Index; the U.S. series consisted of the S&P 500 Index, the 90-day T-bill, and a U.S. government bond index (for 10-year bonds). We also constructed two equally weighted portfolios containing these three assets for the United Kingdom and the United States.We used both parametric (equally weighted, exponentially weighted, and generalized autoregressive conditional heteroscedasticity) models and nonparametric models to measure VAR, and we applied a method based on the generalized Pareto distribution, which allowed for the fat-tailed nature of the return distributions. Following the Basle Committee rules, we determined the adequacy of the VAR models by using backtests (i.e., out-of-sample tests), which counted the number of days during the past trading year that the capital charge was insufficient to cover daily trading losses.We found that, although the VAR estimates from the various models appear quite similar, the models produce substantially different results for the numbers of days on which the realized losses exceeded minimum capital risk requirements. We also found that the effect on the performance of the models of using longer runs of data (rather than the single trading year required by the Basle Committee) depends on the model and asset series under consideration. We discovered that a method based on quantile estimation performed considerably better in many instances than simple parametric approaches based on the normal distribution or a more complex parametric approach based on the generalized Pareto distribution. We show that the use of critical values from a normal distribution in conjunction with a parametric approach when the actual data are fat tailed can lead to a substantially less accurate VAR estimate (specifically, a systematic understatement of VAR) than the use of a simple nonparametric approach.Finally, the closer quantiles are to the mean of the distribution, the more accurately they can be estimated. Therefore, if a regulator has the desirable objective of ensuring that virtually all probable losses are covered, using a smaller nominal coverage probability (say, 95 percent instead of 99 percent), combined with a larger multiplier, is preferable. Our results thus have important implications for risk managers and market regulators.

Suggested Citation

  • Chris Brooks & Gita Persand, 2002. "Model Choice and Value-at-Risk Performance," Financial Analysts Journal, Taylor & Francis Journals, vol. 58(5), pages 87-97, September.
  • Handle: RePEc:taf:ufajxx:v:58:y:2002:i:5:p:87-97
    DOI: 10.2469/faj.v58.n5.2471
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.2469/faj.v58.n5.2471
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.2469/faj.v58.n5.2471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2016. "Downside risk and stock returns: An empirical analysis of the long-run and short-run dynamics from the G-7 Countries," SFB 649 Discussion Papers 2016-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ufajxx:v:58:y:2002:i:5:p:87-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/ufaj20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.