IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v20y2016i3p233-251.html
   My bibliography  Save this article

Empirical Evidence on the Use of Credit Scoring for Predicting Insurance Losses with Psycho-social and Biochemical Explanations

Author

Listed:
  • Linda L. Golden
  • Patrick L. Brockett
  • Jing Ai
  • Bruce Kellison

Abstract

An important development in personal lines of insurance in the United States is the use of credit history data for insurance risk classification to predict losses. This research presents the results of collaboration with industry conducted by a university at the request of its state legislature. The purpose was to see the viability and validity of the use of credit scoring to predict insurance losses given its controversial nature and criticism as redundant of other predictive variables currently used. Working with industry and government, this study analyzed more than 175,000 policyholders’ information for the relationship between credit score and claims. Credit scores were significantly related to incurred losses, evidencing both statistical and practical significance. We investigate whether the revealed relationship between credit score and incurred losses was explainable by overlap with existing underwriting variables or whether the credit score adds new information about losses not contained in existing underwriting variables. The results show that credit scores contain significant information not already incorporated into other traditional rating variables (e.g., age, sex, driving history). We discuss how sensation seeking and self-control theory provide a partial explanation of why credit scoring works (the psycho-social perspective). This article also presents an overview of biological and chemical correlates of risk taking that helps explain why knowing risk-taking behavior in one realm (e.g., risky financial behavior and poor credit history) transits to predicting risk-taking behavior in other realms (e.g., automobile insurance incurred losses). Additional research is needed to advance new nontraditional loss prediction variables from social media consumer information to using information provided by technological advances. The evolving and dynamic nature of the insurance marketplace makes it imperative that professionals continue to evolve predictive variables and for academics to assist with understanding the whys of the relationships through theory development.

Suggested Citation

  • Linda L. Golden & Patrick L. Brockett & Jing Ai & Bruce Kellison, 2016. "Empirical Evidence on the Use of Credit Scoring for Predicting Insurance Losses with Psycho-social and Biochemical Explanations," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(3), pages 233-251, July.
  • Handle: RePEc:taf:uaajxx:v:20:y:2016:i:3:p:233-251
    DOI: 10.1080/10920277.2016.1209118
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2016.1209118
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2016.1209118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kita-Wojciechowska Kinga & Kidziński Łukasz, 2019. "Google Street View image predicts car accident risk," Central European Economic Journal, Sciendo, vol. 6(53), pages 151-163, January.
    2. Levon Barseghyan & Francesca Molinari & Darcy Steeg Morris & Joshua C. Teitelbaum, 2020. "The Cost of Legal Restrictions on Experience Rating," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 17(1), pages 38-70, March.
    3. Zhang, Yuxin & Brockett, Patrick, 2020. "Modeling stochastic mortality for joint lives through subordinators," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 166-172.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:20:y:2016:i:3:p:233-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.