IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v13y2009i2p252-270.html
   My bibliography  Save this article

On the Joint Distributions of the Time to Ruin, the Surplus Prior to Ruin, and the Deficit at Ruin in the Classical Risk Model

Author

Listed:
  • David Landriault
  • Gordon Willmot

Abstract

The seminal paper by Gerber and Shiu (1998) unified and extended the study of the event of ruin and related quantities, including the time at which the event of ruin occurs, the deficit at the time of ruin, and the surplus immediately prior to ruin. The first two of these quantities are fundamentally important for risk management techniques that utilize the ideas of Value-at-Risk and Tail Value-at-Risk. As is well known, calculation of these and related quantities requires knowledge of the associated probability distributions. In this paper we derive an explicit expression for the joint (defective) distribution of the time to ruin, the surplus immediately prior to ruin, and the deficit at ruin in the classical compound Poisson risk model. As a by-product, we obtain expressions for the three bivariate distributions generated by the time to ruin, the surplus prior to ruin, and the deficit at ruin. Finally, we consider mixed Erlang claim sizes and show how the joint (defective) distribution of the time to ruin, the surplus prior to ruin, and the deficit at ruin can be calculated.

Suggested Citation

  • David Landriault & Gordon Willmot, 2009. "On the Joint Distributions of the Time to Ruin, the Surplus Prior to Ruin, and the Deficit at Ruin in the Classical Risk Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 252-270.
  • Handle: RePEc:taf:uaajxx:v:13:y:2009:i:2:p:252-270
    DOI: 10.1080/10920277.2009.10597550
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2009.10597550
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2009.10597550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    2. Jos'e Miguel Flores-Contr'o, 2024. "The Gerber-Shiu Expected Discounted Penalty Function: An Application to Poverty Trapping," Papers 2402.11715, arXiv.org, revised Sep 2024.
    3. Landriault, David & Lemieux, Christiane & Willmot, Gordon E., 2012. "An adaptive premium policy with a Bayesian motivation in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 370-378.
    4. Willmot, Gordon E. & Woo, Jae-Kyung, 2010. "Surplus analysis for a class of Coxian interclaim time distributions with applications to mixed Erlang claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 32-41, February.
    5. Landriault, David & Li, Bin & Shi, Tianxiang & Xu, Di, 2019. "On the distribution of classic and some exotic ruin times," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 38-45.
    6. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "On the time to ruin for a dependent delayed capital injection risk model," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 119-135.
    7. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    8. Cheung, Eric C.K. & Landriault, David, 2010. "A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 127-134, February.
    9. Kim, So-Yeun & Willmot, Gordon E., 2016. "On the analysis of ruin-related quantities in the delayed renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 77-85.
    10. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    11. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    12. Huynh, Mirabelle & Landriault, David & Shi, Tianxiang & Willmot, Gordon E., 2015. "On a risk model with claim investigation," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 37-45.
    13. Landriault, David & Shi, Tianxiang & Willmot, Gordon E., 2011. "Joint densities involving the time to ruin in the Sparre Andersen risk model under exponential assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 371-379.
    14. Dimitrina S. Dimitrova & Zvetan G. Ignatov & Vladimir K. Kaishev, 2019. "Ruin and Deficit Under Claim Arrivals with the Order Statistics Property," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 511-530, June.
    15. Li, Shuanming & Lu, Yi, 2017. "Distributional study of finite-time ruin related problems for the classical risk model," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 319-330.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:13:y:2009:i:2:p:252-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.