IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v47y2016i16p3857-3863.html
   My bibliography  Save this article

Global exponential stabilisation of a class of nonlinear time-delay systems

Author

Listed:
  • Amel Benabdallah
  • Nadhem Echi

Abstract

This paper deals with the state and output feedback stabilisation problems for a family of nonlinear time-delay systems satisfying some relaxed triangular-type condition. The delay is supposed to be constant. Parameter-dependent control laws are used to compensate for the nonlinearities. Based on the Lyapunov–Krasovskii functionals, global exponential stability of the closed-loop systems is achieved. Finally, an extension to nonlinear time-varying delay systems is given.

Suggested Citation

  • Amel Benabdallah & Nadhem Echi, 2016. "Global exponential stabilisation of a class of nonlinear time-delay systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(16), pages 3857-3863, December.
  • Handle: RePEc:taf:tsysxx:v:47:y:2016:i:16:p:3857-3863
    DOI: 10.1080/00207721.2015.1135356
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2015.1135356
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2015.1135356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Syed Ali, M. & Balasubramaniam, P., 2009. "Global exponential stability of uncertain fuzzy BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2191-2199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Zhiyong & Zhang, He & Zhang, Hongyu & Zhang, Hua & Lu, Guichen, 2015. "Mean square stabilization and mean square exponential stabilization of stochastic BAM neural networks with Markovian jumping parameters," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 156-165.
    2. Chang, Wenting & Sang, Hong & Guo, Liangdong & Wu, Libing & Dimirovski, Georgi M., 2024. "Integrated L∞ anti-disturbance synchronization control for switched neural networks with unknown delays," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. R. Sakthivel & R. Raja & S. M. Anthoni, 2013. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 251-273, July.
    4. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    5. R. Sakthivel & R. Raja & S. M. Anthoni, 2011. "Exponential Stability for Delayed Stochastic Bidirectional Associative Memory Neural Networks with Markovian Jumping and Impulses," Journal of Optimization Theory and Applications, Springer, vol. 150(1), pages 166-187, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:47:y:2016:i:16:p:3857-3863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.