IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v47y2016i15p3609-3618.html
   My bibliography  Save this article

Formation-containment control of second-order multi-agent systems with only sampled position data

Author

Listed:
  • Baojie Zheng
  • Xiaowu Mu

Abstract

This paper studies the formation-containment control problem of second-order multi-agent systems with only sampled position data. It is assumed that there exist interactions among leaders and the leaders’ neighbours are only leaders. Two different control protocols with only sampled position information are proposed for followers and leaders, respectively. By the algebraic graph theory and matrix theory, sufficient conditions are given to guarantee that the leaders achieve a desired formation and the followers asymptotically converge into the convex hull formed by the corresponding states of the leaders, i.e. the multi-agent systems achieve formation-containment. Moreover, an explicit expression of the formation position function is given for each leader. Finally, a numerical simulation is provided to illustrate the effectiveness of theoretical results.

Suggested Citation

  • Baojie Zheng & Xiaowu Mu, 2016. "Formation-containment control of second-order multi-agent systems with only sampled position data," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3609-3618, November.
  • Handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3609-3618
    DOI: 10.1080/00207721.2015.1107148
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2015.1107148
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2015.1107148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Ke & Yang, Yupu, 2009. "Leader-following consensus problem with a varying-velocity leader and time-varying delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 193-208.
    2. Hu, Jiangping & Hong, Yiguang, 2007. "Leader-following coordination of multi-agent systems with coupling time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 853-863.
    3. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    4. Lian, Zhaotong & Deshmukh, Abhijit, 2006. "Performance prediction of an unmanned airborne vehicle multi-agent system," European Journal of Operational Research, Elsevier, vol. 172(2), pages 680-695, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao-Dong Xia & Cheng-Lin Liu & Fei Liu, 2018. "Formation-Containment Control of Second-Order Multiagent Systems via Intermittent Communication," Complexity, Hindawi, vol. 2018, pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi, Jianxiang & Shi, Zongying & Zhong, Yisheng, 2012. "Admissible consensus and consensualization of high-order linear time-invariant singular swarm systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5839-5849.
    2. Wu, Zhihai & Peng, Li & Xie, Linbo & Wen, Jiwei, 2013. "Stochastic bounded consensus tracking of leader–follower multi-agent systems with measurement noises based on sampled-data with small sampling delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 918-928.
    3. Rudy Cepeda-Gomez, 2016. "Finding the exact delay bound for consensus of linear multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(11), pages 2598-2606, August.
    4. Jing Bai & Guoguang Wen & Ahmed Rahmani & Xing Chu & Yongguang Yu, 2016. "Consensus with a reference state for fractional-order multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(1), pages 222-234, January.
    5. Moina Ajmeri & Ahmad Ali, 2017. "Analytical design of modified Smith predictor for unstable second-order processes with time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(8), pages 1671-1681, June.
    6. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    7. Mourad Kchaou & Ahmed El-Hajjaji, 2017. "Resilient sliding mode control for discrete-time descriptor fuzzy systems with multiple time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 288-301, January.
    8. Changyin Sun & Qing Wang & Yao Yu, 2017. "Robust output containment control of multi-agent systems with unknown heterogeneous nonlinear uncertainties in directed networks," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1173-1181, April.
    9. Hassan Ghiti Sarand & Bahram Karimi, 2016. "Synchronisation of high-order MIMO nonlinear systems using distributed neuro-adaptive control," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(9), pages 2214-2224, July.
    10. Nadja Bömmel & Guido Heineck, 2023. "Revisiting the causal effect of education on political participation and interest," Education Economics, Taylor & Francis Journals, vol. 31(6), pages 664-682, November.
    11. Ruan, Xiaoli & Xu, Chen & Feng, Jianwen & Wang, Jingyi & Zhao, Yi, 2022. "Adaptive dynamic event-triggered control for multi-agent systems with matched uncertainties under directed topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    12. R. Sakthivel & V. Nithya & Yong-Ki Ma & Chao Wang, 2018. "Finite-Time Nonfragile Dissipative Filter Design for Wireless Networked Systems with Sensor Failures," Complexity, Hindawi, vol. 2018, pages 1-13, October.
    13. Zhang-peng Tian & Hong-yu Zhang & Jing Wang & Jian-qiang Wang & Xiao-hong Chen, 2016. "Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3598-3608, November.
    14. Carlos Bianchi & Pablo Galaso & Sergio Palomeque, 2020. "Invention and Collaboration Networks in Latin America: Evidence from Patent Data," Documentos de Trabajo (working papers) 20-04, Instituto de Economía - IECON.
    15. Burcu Yılmaz Kaya & Aylin Adem & Metin Dağdeviren, 2020. "A DSS-Based Novel Approach Proposition Employing Decision Techniques for System Design," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 413-445, March.
    16. M.V. Basin & M. Hernandez-Gonzalez, 2016. "Discrete-time filtering for nonlinear polynomial systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(9), pages 2058-2066, July.
    17. Boone, David, 2016. "New Zealand public service leaders and organisational change inception: A framework for deciding what to change," MBA Research Papers 6137, Victoria University of Wellington, School of Management.
    18. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    19. Shafi F. Al Dousari, 2019. "Transformation of Texaco and Barriers to Its Implementation," International Business Research, Canadian Center of Science and Education, vol. 12(11), pages 38-47, November.
    20. A’kif AL-FUGARA & Abdel Rahman AL-SHABEEB & Yahya AL-SHAWABKEH & Hani AL-AMOUSH & Rida AL-ADAMAT, 2018. "Simulation And Prediction Of Urban Spatial Expansion In Highly Vibrant Cities Using The Sleuth Model: A Case Study Of Amman Metropolitan, Jordan," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(1), pages 37-56, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3609-3618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.