IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v47y2016i15p3529-3536.html
   My bibliography  Save this article

Hierarchical dispatch using two-stage optimisation for electricity markets in smart grid

Author

Listed:
  • Jie Yang
  • Guoshan Zhang
  • Kai Ma

Abstract

This paper proposes a hierarchical dispatch method for the electricity markets consisting of wholesale markets and retail markets. In the wholesale markets, the generators and the retailers decide the generation and the purchase according to the market-clearing price. In the retail markets, the retailers set the retail price to adjust the electricity consumption of the consumers. Due to the two-way communications in smart grid, the retailers can decide the electricity purchase from the wholesale markets based on the information on electricity usage of consumers in the retail markets. We establish the hierarchical dispatch model for the wholesale markets and the retail markets and develop distributed algorithms to search for the optimal generation, purchase, and consumption. Numerical results show the balance between the supply and demand, the profits of the retailers, and the convergence of the distributed algorithms.

Suggested Citation

  • Jie Yang & Guoshan Zhang & Kai Ma, 2016. "Hierarchical dispatch using two-stage optimisation for electricity markets in smart grid," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3529-3536, November.
  • Handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3529-3536
    DOI: 10.1080/00207721.2015.1090042
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2015.1090042
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2015.1090042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V.G. Asouti & K.C. Giannakoglou, 2012. "A low-cost evolutionary algorithm for the unit commitment problem considering probabilistic unit outages," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(7), pages 1322-1335.
    2. Spees, Kathleen & Lave, Lester B., 2007. "Demand Response and Electricity Market Efficiency," The Electricity Journal, Elsevier, vol. 20(3), pages 69-85, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Warren, 2018. "Demand-side policy: Global evidence base and implementation patterns," Energy & Environment, , vol. 29(5), pages 706-731, August.
    2. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
    3. Derakhshan, Ghasem & Shayanfar, Heidar Ali & Kazemi, Ahad, 2016. "The optimization of demand response programs in smart grids," Energy Policy, Elsevier, vol. 94(C), pages 295-306.
    4. Derya Eryilmaz, Timothy M. Smith, and Frances R. Homans, 2017. "Price Responsiveness in Electricity Markets: Implications for Demand Response in the Midwest," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    5. Adela Conchado & Pedro Linares, 2010. "The Economic Impact of Demand-Response Programs on Power Systems. A survey of the State of the Art," Working Papers 02-2010, Economics for Energy.
    6. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    7. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.
    8. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
    9. Shira Horowitz and Lester Lave, 2014. "Equity in Residential Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    10. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2020. "Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators," Applied Energy, Elsevier, vol. 279(C).
    11. Manuel Frondel and Gerhard Kussel, 2019. "Switching on Electricity Demand Response: Evidence for German Households," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    12. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    13. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    14. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    15. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Building sustainable energy systems: Homeostatic control of grid-connected microgrids, as a means to reconcile power supply and energy demand response management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1168-1191.
    16. Choi, Jun-Ki & Bakshi, Bhavik R. & Hubacek, Klaus & Nader, Jordan, 2016. "A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies," Applied Energy, Elsevier, vol. 184(C), pages 830-839.
    17. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan, 2019. "Heterogeneity in the price response of residential electricity demand: A dynamic approach for Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 119-134.
    18. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    19. Hamed, Mohammad M. & Ali, Hesham & Abdelal, Qasem, 2022. "Forecasting annual electric power consumption using a random parameters model with heterogeneity in means and variances," Energy, Elsevier, vol. 255(C).
    20. Nataf, Kalen & Bradley, Thomas H., 2016. "An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities," Applied Energy, Elsevier, vol. 164(C), pages 133-139.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3529-3536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.