IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i16p3032-3050.html
   My bibliography  Save this article

Learning accurate very fast decision trees from uncertain data streams

Author

Listed:
  • Chunquan Liang
  • Yang Zhang
  • Peng Shi
  • Zhengguo Hu

Abstract

Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.

Suggested Citation

  • Chunquan Liang & Yang Zhang & Peng Shi & Zhengguo Hu, 2015. "Learning accurate very fast decision trees from uncertain data streams," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(16), pages 3032-3050, December.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:16:p:3032-3050
    DOI: 10.1080/00207721.2014.895877
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2014.895877
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2014.895877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiazhen He & Yang Zhang & Xue Li & Peng Shi, 2012. "Learning naive Bayes classifiers from positive and unlabelled examples with uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(10), pages 1805-1825.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akshay Kangale & S. Krishna Kumar & Mohd Arshad Naeem & Mark Williams & M. K. Tiwari, 2016. "Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3272-3286, October.
    2. Oliver Takawira & John W. Muteba Mwamba, 2020. "Determinants of Sovereign Credit Ratings: An Application of the Naïve Bayes Classifier," Eurasian Journal of Economics and Finance, Eurasian Publications, vol. 8(4), pages 279-299.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:16:p:3032-3050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.