IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i1p151-165.html
   My bibliography  Save this article

Robust and adaptive tracking control against actuator faults with a linearised aircraft application

Author

Listed:
  • Xiao-Zheng Jin
  • Guang-Hong Yang
  • Xiao-Heng Chang

Abstract

This article studies the problem of designing adaptive fault-tolerant H∞ tracking controllers for a class of aircraft flight systems against general actuator faults and bounded perturbations. A robust adaptive state-feedback controller is constructed by a stabilising controller gain and an adaptive control gain function. Using mode-dependent Lyapunov functions, linear matrix inequality-based conditions are developed to find the controller gain such that disturbance attenuation performance is optimised. Adaptive control schemes are proposed to estimate the unknown controller parameters on-line for unparametrisable stuck faults and perturbation compensations. Based on Lyapunov stability theory, it is shown that the resulting closed-loop systems can guarantee asymptotic tracking with H∞ performances in the presence of faults on actuators and perturbations. An application to a decoupled linearised dynamic aircraft system and its simulation results are given.

Suggested Citation

  • Xiao-Zheng Jin & Guang-Hong Yang & Xiao-Heng Chang, 2013. "Robust and adaptive tracking control against actuator faults with a linearised aircraft application," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(1), pages 151-165.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:1:p:151-165
    DOI: 10.1080/00207721.2011.598958
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.598958
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.598958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasile Dragan, 2014. "Robust stabilisation of discrete-time time-varying linear systems with Markovian switching and nonlinear parametric uncertainties," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1508-1517, July.
    2. Yu, Zhefeng & Zhao, Feng & Ding, Shihong & Chen, Xiangyong, 2022. "Adaptive pre-assigned finite-time control of uncertain nonlinear systems with unknown control gains," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    3. Zhao, Zhi-Ye & Jin, Xiao-Zheng & Wu, Xiao-Ming & Wang, Hai & Chi, Jing, 2022. "Neural network-based fixed-time sliding mode control for a class of nonlinear Euler-Lagrange systems," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    4. P.R. Ouyang & V. Pano & T. Dam, 2015. "PID position domain control for contour tracking," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(1), pages 111-124, January.
    5. Zhiyao Ma & Yongming Li & Shaocheng Tong, 2017. "Observer-based fuzzy adaptive fault control for a class of MIMO nonlinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1331-1346, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:1:p:151-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.