IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v36y2013i2p170-200.html
   My bibliography  Save this article

Modelling trip distribution with fuzzy and genetic fuzzy systems

Author

Listed:
  • Mert Kompil
  • H. Murat Celik

Abstract

This paper explores the potential capabilities of fuzzy and genetic fuzzy system approaches in urban trip distribution modelling with some new features. First, a simple fuzzy rule-based system (FRBS) and a novel genetic fuzzy rule-based system [GFRBS: a fuzzy system improved by a knowledge base learning process with genetic algorithms (GAs)] are designed to model intra-city passenger flows for Istanbul. Subsequently, their accuracy, applicability and generalizability characteristics are evaluated against the well-known gravity- and neural network (NN)-based trip distribution models. The overall results show that: traditional doubly constrained gravity models are still simple and efficient; NNs may not show expected performance when they are forced to satisfy trip constraints; simply-designed FRBSs, learning from observations and expertise, are both efficient and interpretable even if the data are large and noisy; and use of GAs in fuzzy rule-based learning considerably increases modelling performance, although it brings additional computation cost.

Suggested Citation

  • Mert Kompil & H. Murat Celik, 2013. "Modelling trip distribution with fuzzy and genetic fuzzy systems," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(2), pages 170-200, April.
  • Handle: RePEc:taf:transp:v:36:y:2013:i:2:p:170-200
    DOI: 10.1080/03081060.2013.770946
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2013.770946
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2013.770946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Rubio-Herrero & Jesús Muñuzuri, 2021. "Indirect estimation of interregional freight flows with a real-valued genetic algorithm," Transportation, Springer, vol. 48(1), pages 257-282, February.
    2. Javier Rubio-Herrero & Jesús Muñuzuri, 2023. "Sparse regression for data-driven deterrence functions in gravity models," Annals of Operations Research, Springer, vol. 323(1), pages 153-174, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:36:y:2013:i:2:p:170-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.