IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v33y2010i7p625-642.html
   My bibliography  Save this article

Bus running time prediction using a statistical pattern recognition technique

Author

Listed:
  • Nam H. Vu
  • Ata M. Khan

Abstract

Given that real-time bus arrival information is viewed positively by passengers of public transit, it is useful to enhance the methodological basis for improving predictions. Specifically, data captured and communicated by intelligent systems are to be supplemented by reliable predictive travel time. This paper reports a model for real-time prediction of urban bus running time that is based on statistical pattern recognition technique, namely locally weighted scatter smoothing. Given a pattern that characterizes the conditions for which bus running time is being predicted, the trained model automatically searches through the historical patterns which are the most similar to the current pattern and on that basis, the prediction is made. For training and testing of the methodology, data retrieved from the automatic vehicle location and automatic passenger counter systems of OC Transpo (Ottawa, Canada) were used. A comparison with other methodologies shows enhanced predictive capability.

Suggested Citation

  • Nam H. Vu & Ata M. Khan, 2010. "Bus running time prediction using a statistical pattern recognition technique," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(7), pages 625-642, July.
  • Handle: RePEc:taf:transp:v:33:y:2010:i:7:p:625-642
    DOI: 10.1080/03081060.2010.512225
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2010.512225
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2010.512225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cats, Oded & Loutos, Gerasimos, 2016. "Evaluating the added-value of online bus arrival prediction schemes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 35-55.
    2. Cats, Oded & Loutos, Gerasimos, 2013. "Real-time bus arrival information system: an empirical evaluation," Working papers in Transport Economics 2013:25, CTS - Centre for Transport Studies Stockholm (KTH and VTI).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:33:y:2010:i:7:p:625-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.