IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v60y2022i24p7527-7550.html
   My bibliography  Save this article

The role of artificial intelligence in supply chain management: mapping the territory

Author

Listed:
  • Rohit Sharma
  • Anjali Shishodia
  • Angappa Gunasekaran
  • Hokey Min
  • Ziaul Haque Munim

Abstract

The study aims to identify the current trends, gaps, and research opportunities in research pertaining to the disruptive field of artificial intelligence (AI) applications in supply chain management (SCM). Since SCM represents managerial innovation due to its new way of integrated system thinking, SCM has emerged as one of the most fruitful business disciplines for AI applications. The study utilises bibliometric review in tracing the evolution of AI research in SCM and further synthesises decades of past AI research efforts to develop viable solutions for various supply chain problems and then proposes promising future research themes that would enrich supply chain decision-aid tools. The study identified five main research clusters through scholarly network and content analysis. The identified themes were: (a) supply chain network design (SCND), (b) supplier selection, (c) inventory planning, (d) demand planning, and (e) green supply chain management. As the role of AI in SCM continues to grow, there is a growing need for exploiting AI as a way to add value to supply chain process. The study proposes a research framework which will help academicians and practitioners in identifying current research patterns of AI in SCM.

Suggested Citation

  • Rohit Sharma & Anjali Shishodia & Angappa Gunasekaran & Hokey Min & Ziaul Haque Munim, 2022. "The role of artificial intelligence in supply chain management: mapping the territory," International Journal of Production Research, Taylor & Francis Journals, vol. 60(24), pages 7527-7550, December.
  • Handle: RePEc:taf:tprsxx:v:60:y:2022:i:24:p:7527-7550
    DOI: 10.1080/00207543.2022.2029611
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2022.2029611
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2022.2029611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghafoori, Arman & Gupta, Manjul & Merhi, Mohammad I. & Gupta, Samrat & Shore, Adam P., 2024. "Toward the role of organizational culture in data-driven digital transformation," International Journal of Production Economics, Elsevier, vol. 271(C).
    2. Samadhiya, Ashutosh & Yadav, Sanjeev & Kumar, Anil & Majumdar, Abhijit & Luthra, Sunil & Garza-Reyes, Jose Arturo & Upadhyay, Arvind, 2023. "The influence of artificial intelligence techniques on disruption management: Does supply chain dynamism matter?," Technology in Society, Elsevier, vol. 75(C).
    3. Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    4. Enrique, Daisy Valle & Lerman, Laura Visintainer & Sousa, Paulo Renato de & Benitez, Guilherme Brittes & Bigares Charrua Santos, Fernando M. & Frank, Alejandro G., 2022. "Being digital and flexible to navigate the storm: How digital transformation enhances supply chain flexibility in turbulent environments," International Journal of Production Economics, Elsevier, vol. 250(C).
    5. Hangl, Johannes & Krause, Simon & Behrens, Viktoria Joy, 2023. "Drivers, barriers and social considerations for AI adoption in SCM," Technology in Society, Elsevier, vol. 74(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:60:y:2022:i:24:p:7527-7550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.