IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v59y2021i24p7537-7559.html
   My bibliography  Save this article

Maintenance optimisation for systems with multi-dimensional degradation and imperfect inspections

Author

Listed:
  • Bin Liu
  • Xiujie Zhao
  • Yiqi Liu
  • Phuc Do

Abstract

In this paper, we develop a maintenance model for systems subjected to multiple correlated degradation processes, where a multivariate stochastic process is used to model the degradation processes, and the covariance matrix is employed to describe the interactions among the processes. The system is considered failed when any of its degradation features hits the pre-specified threshold. Due to the dormancy of degradation-based failures, inspection is implemented to detect the hidden failures. The failed systems are replaced upon inspection. We assume an imperfect inspection, in such a way that a failure can only be detected with a specific probability. Based on the degradation processes, system reliability is evaluated to serve as the foundation, followed by a maintenance model to reduce the economic losses. We provide theoretical boundaries of the cost-optimal inspection intervals, which are then integrated into the optimisation algorithm to relieve the computational burden. Finally, a fatigue crack propagation process is employed as an example to illustrate the effectiveness and robustness of the developed maintenance policy. Numerical results imply that the inspection inaccuracy contributes significantly to the operating cost and it is suggested that more effort should be paid to improve the inspection accuracy.

Suggested Citation

  • Bin Liu & Xiujie Zhao & Yiqi Liu & Phuc Do, 2021. "Maintenance optimisation for systems with multi-dimensional degradation and imperfect inspections," International Journal of Production Research, Taylor & Francis Journals, vol. 59(24), pages 7537-7559, December.
  • Handle: RePEc:taf:tprsxx:v:59:y:2021:i:24:p:7537-7559
    DOI: 10.1080/00207543.2020.1844919
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1844919
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1844919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Nan Zhang & Sen Tian & Le Li & Zhongbin Wang & Jun Zhang, 2023. "Maintenance analysis of a partial observable K-out-of-N system with load sharing units," Journal of Risk and Reliability, , vol. 237(4), pages 703-713, August.
    3. Mukhopadhyay, Koushiki & Liu, Bin & Bedford, Tim & Finkelstein, Maxim, 2023. "Remaining lifetime of degrading systems continuously monitored by degrading sensors," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Wu, Bin & Zhang, Xiaohong & Shi, Hui & Zeng, Jianchao, 2024. "Failure mode division and remaining useful life prognostics of multi-indicator systems with multi-fault," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:59:y:2021:i:24:p:7537-7559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.