IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i19p6004-6023.html
   My bibliography  Save this article

A new medical staff allocation via simulation optimisation for an emergency department in Hong Kong

Author

Listed:
  • Wenjie Chen
  • Hainan Guo
  • Kwok-Leung Tsui

Abstract

Whether triage targets can be achieved has been an imperative assessment of service qualities for an emergency department in healthcare management. In this research, we focus on triage targets and try to fully meet the target of fast emergency response for critical patients subject to triage requirements for other category patients by optimising the medical staff allocation in the emergency department. Main challenges stem from multiple stochastic constraints and the time-consuming simulation. To solve the stochastically constrained discrete optimisation via simulation problem, we develop a discrete-event simulation model and propose a simulated-annealing-based algorithm called ConSA that adopts a special searching mechanism and an efficient simulation budget allocation rule to find a high-quality configuration of medical staff. A case study based on the data from a public hospital in Hong Kong is carried out. Numerical experiments demonstrate that our algorithm leads to a 38.28% improvement in the main performance compared to the current staff allocation and dominates other algorithms in terms of computational efficiency and output accuracy. It indicates that our method is a good decision tool for hospital managers.

Suggested Citation

  • Wenjie Chen & Hainan Guo & Kwok-Leung Tsui, 2020. "A new medical staff allocation via simulation optimisation for an emergency department in Hong Kong," International Journal of Production Research, Taylor & Francis Journals, vol. 58(19), pages 6004-6023, October.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:19:p:6004-6023
    DOI: 10.1080/00207543.2019.1665201
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1665201
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1665201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    2. Weiwei Chen & Siyang Gao & Wenjie Chen & Jianzhong Du, 2023. "Optimizing resource allocation in service systems via simulation: A Bayesian formulation," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 65-81, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:19:p:6004-6023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.