IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i12p3992-4006.html
   My bibliography  Save this article

Predictive modelling of surface roughness in fused deposition modelling using data fusion

Author

Listed:
  • Dazhong Wu
  • Yupeng Wei
  • Janis Terpenny

Abstract

To realise high quality, additively manufactured parts, real-time process monitoring and advanced predictive modelling tools are crucial for accelerating quality assurance in additive manufacturing. While previous research has demonstrated the effectiveness of physics- and model-based diagnosis and prognosis for additive manufacturing, very little research has been reported on real-time monitoring and predictive modelling of the surface roughness of additively manufactured parts. This paper presents a data fusion approach to predicting surface roughness in fused deposition modelling (FDM) processes. The predictive models are trained using random forests (RFs), support vector regression (SVR), ridge regression (RR), and least absolute shrinkage and selection operator (LASSO). A real-time monitoring system is developed to monitor the health condition of a FDM machine in real-time using multiple sensors. RFs, SVR, RR, and LASSO are demonstrated on the condition monitoring data collected from these sensors. To integrate the data sources, a feature-level data fusion method is introduced. Experimental results have shown that the predictive models trained by the machine learning algorithms are capable of predicting the surface roughness of additively manufacturing parts with very high accuracy. The prediction accuracy can be further improved using the data fusion method.

Suggested Citation

  • Dazhong Wu & Yupeng Wei & Janis Terpenny, 2019. "Predictive modelling of surface roughness in fused deposition modelling using data fusion," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3992-4006, June.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3992-4006
    DOI: 10.1080/00207543.2018.1505058
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1505058
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1505058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    2. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    3. Shanmugaraj Senthilnathan & Benny Raphael, 2022. "Using Computer Vision for Monitoring the Quality of 3D-Printed Concrete Structures," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    4. Yupeng Wei & Dazhong Wu, 2024. "Material removal rate prediction in chemical mechanical planarization with conditional probabilistic autoencoder and stacking ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 115-127, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3992-4006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.