IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i12p3847-3863.html
   My bibliography  Save this article

Multi-objective optimisation of multi-task scheduling in cloud manufacturing

Author

Listed:
  • Feng Li
  • Lin Zhang
  • T. W. Liao
  • Yongkui Liu

Abstract

Cloud manufacturing is a consumer-centric requirement-driven manufacturing paradigm that integrates distributed resources for providing services to consumers in an on-demand manner. Scheduling of multiple tasks is an important technical means for satisfying consumer requirements in cloud manufacturing. However, high individualised requirements and the associated complex task structures complicate the task scheduling in cloud manufacturing. This paper establishes a more comprehensive model for scheduling multiple distinct tasks with complicated manufacturing processes. The hierarchical relationships (a mixture of dependency and independency) of subtasks within tasks are considered. The objectives involve three kinds of time and cost factors, namely processing time, setup time, transfer time and the respective cost. In addition, service quality is also considered into the optimisation objective. Two multi-objective-meta-heuristic algorithms, i.e. ACO-based multi-objective algorithm (MACO) and NSGA-II-based multi-objective algorithm (MGA), are designed to solve the scheduling problem. A detailed analysis of the performance of the two algorithms is performed by applying them to several different scheduling instances. Experimental results indicate that in most cases the MACO algorithm can obtain a more diverse set of Pareto solutions hence offering more alternatives to meet widely different users’ needs.

Suggested Citation

  • Feng Li & Lin Zhang & T. W. Liao & Yongkui Liu, 2019. "Multi-objective optimisation of multi-task scheduling in cloud manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3847-3863, June.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3847-3863
    DOI: 10.1080/00207543.2018.1538579
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1538579
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1538579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    2. Dong Yang & Qidong Liu & Jia Li & Yongji Jia, 2020. "Multi-Objective Optimization of Service Selection and Scheduling in Cloud Manufacturing Considering Environmental Sustainability," Sustainability, MDPI, vol. 12(18), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3847-3863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.