IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i11p3695-3718.html
   My bibliography  Save this article

A distributed approximation approach for solving the sustainable supply chain network design problem

Author

Listed:
  • Yuhan Guo
  • Fangxia Hu
  • Hamid Allaoui
  • Youssef Boulaksil

Abstract

This paper introduces a comprehensive Mixed Integer Linear Programming (MILP) model for a sustainable supply chain network design problem, and an efficient Distributed Approximation Approach (DAA) to solve it approximately. We study a multi-echelon, multi-product and multi-modal supply chain with different transportation modes. Besides relevant costs in the supply chain such as procurement, production and distribution cost, we also explicitly consider the environmental footprint, represented by carbon emissions and water consumption from production and transportation. The approximation approach is a decomposition-based method. First, the original problem is divided into a partner selection sub-problem and a transportation planning sub-problem. Then multiple filter mechanisms are used to remove potentially infeasible solutions, and an approximate value of the objective function is calculated for each of the remaining solutions to perform a further selection. The one with the lowest approximation is chosen to be applied with a branch-and-bound method. Finally, the algorithm is paralleled and implemented in Apache Spark distributed computing framework to further improve efficiency. Experimental results show that the proposed DAA can provide high quality solutions compared to the optimal solutions of the MILP model with mostly a negligible relative gap and solve large instances in much shorter time than CPLEX. Moreover, in our numerical study, we also compare the results of our model with another version of the model that does not take the environmental footprint into consideration. The results show that explicitly incorporating environmental footprint results in a substantial decrease of CO2 emissions and water consumption at a negligible cost increase. This insight may be of interest to managers and other decision makers and policy makers.

Suggested Citation

  • Yuhan Guo & Fangxia Hu & Hamid Allaoui & Youssef Boulaksil, 2019. "A distributed approximation approach for solving the sustainable supply chain network design problem," International Journal of Production Research, Taylor & Francis Journals, vol. 57(11), pages 3695-3718, June.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:11:p:3695-3718
    DOI: 10.1080/00207543.2018.1556412
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1556412
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1556412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yuhan & Yu, Junyu & Allaoui, Hamid & Choudhary, Alok, 2022. "Lateral collaboration with cost-sharing in sustainable supply chain optimisation: A combinatorial framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Jiakuan Chen & Haoyu Wen, 2023. "The application of complex network theory for resilience improvement of knowledge-intensive supply chains," Operations Management Research, Springer, vol. 16(3), pages 1140-1161, September.
    3. Guo, Yuhan & Zhang, Yu & Boulaksil, Youssef & Qian, Yaguan & Allaoui, Hamid, 2023. "Modelling and analysis of online ride-sharing platforms – A sustainability perspective," European Journal of Operational Research, Elsevier, vol. 304(2), pages 577-595.
    4. Eirini Aivazidou & Dimitrios Aidonis & Naoum Tsolakis & Charisios Achillas & Dimitrios Vlachos, 2022. "Wine Supply Chain Network Configuration under a Water Footprint Cap," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    5. Mrabti, Nassim & Hamani, Nadia & Boulaksil, Youssef & Amine Gargouri, Mohamed & Delahoche, Laurent, 2022. "A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Qiu-Rui He & Ping-Kuo Chen, 2023. "Developing a green supplier evaluation system for the Chinese semiconductor manufacturing industry based on supplier willingness," Operations Management Research, Springer, vol. 16(1), pages 227-244, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:11:p:3695-3718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.